ГОСТ Р 12.3.047-98 
А.3 горючие пыли. Z = 0,5 f, (a.22). Пример. Приложение б. Метод расчета... ГОСТ Р 12.3.047-98 
А.3 горючие пыли. Z = 0,5 f, (a.22). Пример. Приложение б. Метод расчета...

ГОСТ Р 12.3.047-98 => А.3 горючие пыли. Z = 0,5 f, (a.22). Пример. Приложение б. Метод расчета размеров зон, ограниченных нижним...

 
Пожарная безопасность - главная
Написать нам
ГОСТы, документы

 

Пожарная безопасность ->  Гост. безопасность ->  ГОСТ Р 12.3.047-98 -> 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
текст целиком
 

А.3 Горючие пыли

А.3.1 Расчет избыточного давления при сгорании пылевоздушной смеси в помещении

А.3.1.1 Избыточное давление при сгорании пылевоздушной смеси Dp, кПа, рассчитывают по формуле

, (A.21)

где М - расчетная масса взвешенной в объеме помещения горючей пыли, образовавшейся в результате аварийной ситуации, кг;

Нт - теплота сгорания пыли, Дж/кг;

P0 - начальное атмосферное давление, кПа (допускается принимать равным 101 кПа);

Z - доля участия взвешенной горючей пыли при сгорании пылевоздушной смеси;

Vсв - свободный объем помещения, м3;

rв - плотность воздуха до сгорания пылевоздушной смеси при начальной температуре Т0, кг/м3;

Ср - теплоемкость воздуха, Дж/(кг·К) [допускается принимать равной 1010 Дж/(кг·К)];

Т0 - начальная температура воздуха, К;

Кн - коэффициент, учитывающий негерметичность помещения и неадиабатичность процесса горения.

Допускается принимать Кн равным трем.

К пылям, способным образовывать горючие пылевоздушные смеси, относят дисперсные материалы, характеризующиеся наличием показателей пожарной опасности: нижним концентрационным пределом распространения пламени, максимальным давлением, развиваемым при сгорании пылевоздушной смеси (более 50 кПа), и скоростью его нарастания, минимальным пожароопасным содержанием кислорода (менее 21 %).

А.3.1.2 Z рассчитывают по формуле

Z = 0,5 F, (A.22)

где F - массовая доля частиц пыли размером менее критического, с превышением которого аэровзвесь становится взрывобезопасной, т. е. неспособной распространять пламя.

В отсутствие возможности получения сведений для расчета Z допускается принимать Z = 0,5.

А.3.1.3 М, кг, рассчитывают по формуле

(A.23)

где Мвз - расчетная масса взвихрившейся пыли, кг;

Мав - расчетная масса пыли, поступившей в помещение в результате аварийной ситуации, кг;

rст - стехиометрическая концентрация горючей пыли в аэровзвеси, кг/м3;

Vав - расчетный объем пылевоздушного облака, образованного при аварийной ситуации в объеме помещения, м3.

В отсутствие возможности получения сведений для расчета Vав допускается принимать

М = Мвз + Мав.

А.3.1.4 Мвз рассчитывают по формуле

Мвз = Квз Мп, (А.24)

где Квз - доля отложенной в помещении пыли, способной перейти во взвешенное состояние в результате аварийной ситуации. В отсутствие экспериментальных сведений о Квз допускается полагать Квз = 0,9;

Мп - масса отложившейся в помещении пыли к моменту аварии, кг.

А.3.1.5 Мав рассчитывают по формуле

Мав = (Мап + ) Кп, (А.25)

где Мап - масса горючей пыли, выбрасываемой в помещение при разгерметизации одного из технологических аппаратов, кг. При отсутствии ограничивающих выброс пыли инженерных устройств следует полагать, что в момент расчетной аварии происходит аварийный выброс в помещение всей находившейся в аппарате пыли;

q - производительность, с которой продолжается поступление пылевидных веществ в аварийный аппарат по трубопроводам до момента их отключения, кг/с;

Т - расчетное время отключения, определяемое в каждом конкретном случае, исходя из реальной обстановки. Следует принимать равным времени срабатывания системы автоматики, если вероятность ее отказа не превышает 0,000001 в год; 120 с, если вероятность отказа системы автоматики превышает 0,000001 в год; 300 с при ручном отключении;

Kп - коэффициент пыления, представляющий отношение массы взвешенной в воздухе пыли ко всей массе пыли, поступившей из аппарата в помещение. В отсутствие экспериментальных сведений о Kп допускается полагать:

- Kп = 0,5 - для пылей с дисперсностью не менее 350 мкм;

- Kп = 1,0 - для пылей с дисперсностью менее 350 мкм.

А.3.1.6 Мп рассчитывают по формуле

, (A.26)

где Kг - доля горючей пыли в общей массе отложений пыли;

Kу - коэффициент эффективности пылеуборки. Принимают равным 0,6 при сухой и 0,7 - при влажной (ручной) пылеуборке; при механизированной вакуумной пылеуборке для ровного пола Kу принимается равным 0,9, для пола с выбоинами (до 5 % площади) - 0,7;

М1 - масса пыли, оседающей на труднодоступных для уборки поверхностях в помещении за период времени между генеральными уборками, кг;

М2 - масса пыли, оседающей на доступных для уборки поверхностях в помещении за период времени между текущими пылеуборками, кг.

Под труднодоступными для уборки площадями подразумевают такие поверхности в производственных помещениях, очистка которых осуществляется только при генеральных пылеуборках. Доступными для уборки местами являются поверхности, пыль с которых удаляется в процессе текущих пылеуборок (ежесменно, ежесуточно и т.п.).

А..3.1.7 Mk (k = 1,2) рассчитывают по формулам

, , (A.27)

где = (M11 + M12 +, ..., + M1n) - масса пыли, выделяющаяся в объем помещения за период времени между генеральными пылеуборками, кг;

M11, ..., M1n - масса пыли, выделяемая соответствующей единицей пылящего оборудования за тот же период времени, кг;

= (M21 + M22 +,..., + М2n) - масса пыли, выделяющаяся в объем помещения за период времени между текущими пылеуборками, кг;

M21, ..., М2n - масса пыли, выделяемая соответствующей единицей пылящего оборудования за тот же период времени, кг;

А - доля выделяющейся в объем помещения пыли, которая удаляется вытяжными вентиляционными системами. В отсутствие экспериментальных сведений об А полагают А = 0;

B1, В2 - доли выделяющейся в объем помещения пыли, оседающей соответственно на труднодоступных и доступных для уборки поверхностях помещения (B1 + B2 = 1).

При отсутствии сведений о коэффициентах B1 и В2 допускается полагать B1 = 1, В2 = 0.

А.3.1.8 M1 и M2 могут быть определены экспериментально (или по аналогии с действующими образцами производства) в период максимальной загрузки оборудования по формуле

, (А.28)

где Gij, Fij - соответственно интенсивность пылеосаждения и площадь для труднодоступных (i = 1) и доступных (i = 2) участков;

j - номер участка пылеосаждения;

Ti - промежуток времени между генеральными (i = 1) и текущими (i = 2) пылеуборками.

А.3.2 Характеристики сгорания пылепаровоздушных смесей в технологическом аппарате

А.3.2.1 Сгорание пылевоздушной смеси в аппарате может протекать как в режиме медленного, дозвукового горения, так и в режиме детонации. В подавляющем большинстве практических случаев встречается медленный (дефлаграционный) режим горения, к которому относят информацию (А.3.2.2, А.3.2.3).

А.3.2.2 Основными расчетными (в предположении достаточной стойкости корпуса аппарата к напряжениям разрыва и деформации) характеристиками взрыва пылевоздушных смесей в аппарате считают:

- рmax - максимальное давление при сгорании пылевоздушной смеси в аппарате, кПа, определяемое как наибольшее давление при сгорании, достигаемое в объеме аппарата при взрывном горении оптимальной пылевоздушной смеси;

- (dp/dt)max - максимальную скорость нарастания давления при сгорании пылевоздушной смеси в аппарате, кПа/с, определяемую как наибольший наклон зависимости давления при сгорании оптимальной пылевоздушной смеси в аппарате от времени при точечном зажигании в оптимальном месте;

- Kst - индекс взрывопожароопасности пыли, кПа/м · с; Kst = (dp/dt)max V1/3 (V - объем аппарата, м3).

А.3.2.3 Для не слишком протяженных технологических аппаратов объемом свыше 16 л справедливы эмпирические правила, в соответствии с которыми:

pmах1 = pmах2; (А.29)

Kst1 = Kst2,

где 1,2 - индексы, относящиеся к двум произвольно выбранным аппаратам.

Для аппарата объемом менее 16 л расчетные значения характеристик сгорания пылевоздушных смесей (по результатам испытаний в крупномасштабной емкости) обладают достаточным запасом надежности.

А.3.2.4 Оценка расчетных значений параметров сгорания пылевоздушных смесей для протяженных аппаратов (с отношением максимального габаритного размера к минимальному порядка 5 и более), а также горения, протекающего в режиме детонации, возможна на основе экспертных заключений.

Пример

Данные для расчета

Рассчитать избыточное давление при сгорании полиэтиленовой пыли в помещении для следующих исходных данных: Мвз = 10 кг; Mав = 90 кг; F = 0,3; Hт = 47·106 Дж/кг; Vсв = 2000 м3; Vав = 20 м3; Рв = 1,2 кг/м3; Tо = 298 К; rст = 0,1 кг·м3.

Определяем Z по формуле (А.22)

Z = 0,5 F = 0,5 · 0,3 = 0,15.

Определяем М по формуле (А.23)

отсюда следует, что М = 14 кг.

Принимая Kн = 3 и подставляя исходные данные в выражение для расчетного избыточного давления при сгорании пылевоздушной смеси, получим:

кПа.

 

 

ПРИЛОЖЕНИЕ Б

(обязательное)

 

МЕТОД РАСЧЕТА РАЗМЕРОВ ЗОН, ОГРАНИЧЕННЫХ НИЖНИМ КОНЦЕНТРАЦИОННЫМ ПРЕДЕЛОМ РАСПРОСТРАНЕНИЯ ПЛАМЕНИ (НКПР) ГАЗОВ И ПАРОВ

 

Б.1 Метод расчета зон, ограниченных НКПР газов и паров, при аварийном поступлении горючих газов и паров ненагретых легковоспламеняющихся жидкостей в открытое пространство при неподвижной воздушной среде

Б.1.1 Расстояния XНКПР, YНКПР и ZНКПР, м, для ГГ и ЛВЖ, ограничивающие область концентраций, превышающих НКПР, рассчитывают по формулам

для ГГ

, (Б.1)

, (Б.2)

для паров ЛВЖ

, (Б.3)

, (Б.4)

где mг - масса поступившего в открытое пространство ГГ при аварийной ситуации, кг;

rг - плотность ГГ при расчетной температуре и атмосферном давлении, кг/м3;

mп - масса паров ЛВЖ, поступивших в открытое пространство за время полного испарения, но не более 3600 с, кг;

rп - плотность паров ЛВЖ при расчетной температуре и атмосферном давлении, кг/м3;

рн - давление насыщенных паров ЛВЖ при расчетной температуре, кПа;

K - коэффициент ( для ЛВЖ);

Т - продолжительность поступления паров ЛВЖ в открытое пространство, с;

СНКПР - нижний концентрационный предел распространения пламени ГГ или паров ЛВЖ, % (об.).

Б.1.2 Радиус Rб, м, и высоту Zб, м, зоны, ограниченной НКПР газов и паров, вычисляют исходя из значений HНКПР, YHKHP и ZНКПР.

При этом Rб > ХНКПР, Rб > YНКПР и Zб > h + Rб для ГГ и Zб > ZНКПР для ЛВЖ (h - высота источника поступления газа от уровня земли, м).

Для ГГ геометрически зона, ограниченная НКПР газов, будет представлять цилиндр с основанием радиусом Rб и высотой hб = 2Rб при Rб £ h и hб = h + Rб при Rб > h, внутри которого расположен источник возможного выделения ГГ.

Для ЛВЖ геометрически зона, ограниченная НКПР паров, будет представлять цилиндр с основанием радиусом Rб и высотой h = ZНКПР при высоте источника паров ЛВЖ h < ZНКПР и hб = h + ZНКПР при h ³ ZНКПР.

За начало отсчета зоны, ограниченной НКПР газов и паров, принимают внешние габаритные размеры аппаратов, установок, трубопроводов и т. п.

Б.1.3 Во всех случаях значения XНКПР, YНКПР и ZНКПР должны быть не менее 0,3 м для ГГ и ЛВЖ.

Примеры

1. Определить размеры зоны, ограниченной НКПР паров, при аварийной разгерметизации трубопровода, транспортирующего ацетон.

Данные для расчета

Трубопровод, транспортирующий ацетон, проложен на открытом пространстве на высоте h = 0,5 м от поверхности земли. Трубопровод оснащен ручными задвижками.

Масса паров ацетона, поступивших в открытое пространство за время полного испарения, определена в соответствии с приложением И и составляет mа = 240 кг при времени испарения Т=3600 с. Максимально возможная температура для данной климатической зоны tр = 36 °С. Плотность паров ацетона ra при tр равна 2,29 кг/м3. Нижний концентрационный предел распространения пламени паров ацетона СНКПР = 2,7 % (об.). Давление насыщенных паров ацетона рн при tp равно 48,09 кПа.

Расчет

Расстояния XНКПР, YНКПР и ZНКПР для ацетона, ограничивающие область концентраций, превышающих НКПР, составят

Таким образом, граница зоны, ограниченной НКПР паров, по горизонтали будет проходить на расстоянии 41,43 м от обечайки трубопровода, а по вертикали - на высоте hб = ZHKHP = 1,55 м от поверхности земли.

2. Определить размеры зоны, ограниченной НКПР газов, при аварийной разгерметизации емкости с метаном на открытом пространстве.

Данные для расчета

При разгерметизации емкости в атмосферу поступит 20 кг метана. Емкость представляет собой цилиндр с основанием радиусом 1 м и высотой hа = 10 м. Максимально возможная температура для данной климатической зоны tр = 30 °С. Плотность метана rм при tр равна 0,645 кг/м3. Нижний концентрационный предел распространения пламени метана СНКПР = 5,28 % (об.)

Расчет

Расстояния XНКПР, YНКПР и ZНКПР для метана, ограничивающие область концентраций, превышающих НКПР, составят

м,

м,

Таким образом, для расчетной аварии емкости с метаном геометрически зона, ограниченная НКПР газов, будет представлять цилиндр с основанием радиусом Rб = 26,18 м и высотой hб = hа + Rб = 10 + 26,18 = 36,18 м. За начало зоны, ограниченной НКПР газов, принимают внешние габаритные размеры емкости.

 

Б.2 Метод расчета размеров зон, ограниченных НКПР газов и паров, при аварийном поступлении горючих газов и паров ненагретых легковоспламеняющихся жидкостей в помещение

Нижеприведенные расчетные формулы применяют для случая 100 m / (rг,п Vсв) < 0,5 СНКПР [СНКПР - нижний концентрационный предел распространения пламени горючего газа или пара, % (об.)] и помещений в форме прямоугольного параллелепипеда с отношением длины к ширине не более 5.

Б.2.1 Расстояния XНКПР, YНКПР и ZНКПР рассчитывают по формулам

, (Б.5)

, (Б.6)

, (Б.7)

где K1 - коэффициент, принимаемый равным 1,1314 для горючих газов и 1,1958 для легковоспламеняющихся жидкостей;

K2 - коэффициент, равный 1 для горючих газов;

для легковоспламеняющихся жидкостей;

K3 - коэффициент, принимаемый равным 0,0253 для горючих газов при отсутствии подвижности воздушной среды; 0,02828 для горючих газов при подвижности воздушной среды; 0,04714 для легковоспламеняющихся жидкостей при отсутствии подвижности воздушной среды и 0,3536 для легковоспламеняющихся жидкостей при подвижности воздушной среды;

h - высота помещения, м.

d, l, b и C0 приведены в А.2.3.

При отрицательных значениях логарифмов расстояния XНКПР, YНКПР и ZНКПР принимают равными 0.

Б.2.2 Радиус Rб и высоту Zб, м, зоны, ограниченной НКПР газов и паров, вычисляют исходя из значений XНКПР, YНКПР и ZНКПР для заданного уровня значимости Q.

При этом Rб > XНКПР, Rб > YНКПР и Zб > h + Rб для ГГ и Zб > ZНКПР для ЛВЖ (h - высота источника поступления газа от пола помещения для ГГ тяжелее воздуха и от потолка помещения для ГГ легче воздуха, м).

Для ГГ геометрически зона, ограниченная НКПР газов, будет представлять цилиндр с основанием радиусом Rб и высотой hб = 2 Rб при Rб £ h и hб = h + Rб при Rб > h, внутри которого расположен источник возможного выделения ГГ. Для ЛВЖ геометрически зона, ограниченная НКПР паров, будет представлять цилиндр с основанием радиусом Rб и высотой Zб = ZНКПР высоте источника паров ЛВЖ h < ZНКПР и Zб = h + ZНКПР при h ³ ZНКПР. За начало отсчета принимают внешние габаритные размеры аппаратов, установок, трубопроводов и т.п.

Б.2.3 Во всех случаях значения расстояний XНКПР, YНКПР и ZНКПР должны быть не менее 0,3 м для ГГ и ЛВЖ.

Примеры

1. Определить размеры зоны, ограниченной НКПР паров, образующейся при аварийной разгерметизации аппарата с ацетоном, при работающей и неработающей общеобменной вентиляции.

Данные для расчета

В центре помещения размером 40 х 40 м и высотой hп = 3 м установлен аппарат с ацетоном. Аппарат представляет собой цилиндр с основанием диаметром da = 0,5 м и высотой ha = 1 м, в котором содержится 25 кг ацетона. Расчетная температура в помещении tp = 30 °С. Плотность паров ацетона rа при tр равна 2,33 кг/м3. Давление насыщенных паров ацетона pн при tр равно 37,73 кПа. Нижний концентрационный предел распространения пламени СНКПР = 2,7 % (об.). В результате разгерметизации аппарата в помещение поступит 25 кг паров ацетона за время испарения Т = 208 с. При работающей общеобменной вентиляции подвижность воздушной среды в помещении u = 0,1 м/с.

Расчет

Допустимые значения отклонений концентраций d при уровне значимости Q = 0,05 будут равны: 1,27 - при работающей вентиляции; 1,25 - при неработающей вентиляции (u = 0).

Предэкспоненциальный множитель С0 будет равен:

при работающей вентиляции

% (об.),

Сн = 100 рн/р0 = 100 ·37,73/101 = 37,36 % (об.),

Vсв = 0,8 Vп = 0,8 · 40 · 40 · 3 = 3840 м3;

при неработающей вентиляции

% (об.).

Расстояния XНКПР, YНКПР и ZНКПР составят:

при работающей вентиляции

м,

м,

м;

при неработающей вентиляции

м,

м,

м.

Таким образом, для ацетона геометрически зона, ограниченная НКПР паров, будет представлять собой цилиндр с основанием радиусом Rб и высотой Zб = hа + ZНКПР, так как hа > ZHKHP, при работающей вентиляции

Zб = 1 + 0,2 = 1,2 м, Rб = 9,01 м;

при неработающей вентиляции

Zб = 1 + 0,03 = 1,03 м, Rб = 10,56 м.

За начало отсчета принимают внешние габаритные размеры аппарата.

2. Определить размеры зоны, ограниченной НКПР газов, образующейся при аварийной разгерметизации газового баллона с метаном, при работающей и неработающей вентиляции.

Данные для расчета

На полу помещения размером 13 х 13 м и высотой Hп = 3 м находится баллон с 0,28 кг метана. Газовый баллон имеет высоту hб = 1,5 м. Расчетная температура в помещении tр = 30 °С. Плотность метана rм при tр равна 0,645 кг/м3. Нижний концентрационный предел распространения пламени метана СНКПР = 5,28 % (об.). При работающей общеобменной вентиляции подвижность воздушной среды в помещении u = 0,1 м/с.

Расчет

Допустимые отклонения концентраций при уровне значимости Q = 0,05 будут равны: 1,37 при работающей вентиляции; 1,38 при неработающей вентиляции (u = 0).

Предэкспоненциальный множитель С0 будет равен:

при работающей вентиляции

% (об.);

при неработающей вентиляции

% (об.);

Расстояния XНКПР, YНКПР и ZНКПР составят:

при работающей вентиляции

,

,

.

следовательно XНКПР, YНКПР и ZНКПР = 0;

при неработающей вентиляции

м,

м,

м.

Таким образом, для метана при неработающей вентиляции геометрически зона, ограниченная НКПР газов, будет представлять собой цилиндр с основанием радиусом Rб = 3,34 м и высотой hб= h + Rб = 3 + 3,34 = 6,34 м. Ввиду того, что hб расчетное больше высоты помещения hп = 3 м, за высоту зоны, ограниченной НКПР газов, принимаем высоту помещения hб = 3 м.

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
текст целиком

 

Краткое содержание:

ГОСТ Р 12.3.047-98

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Система стандартов безопасности труда

ПОЖАРНАЯ БЕЗОПАСНОСТЬ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

Общие требования. Методы контроля

ОКС 13.220

ОКСТУ 4854

Предисловие

3 ВВЕДЕН ВПЕРВЫЕ

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

2 НОРМАТИВНЫЕ ССЫЛКИ

3 ОПРЕДЕЛЕНИЯ

4 ОБЩИЕ ПОЛОЖЕНИЯ

5 ОБЕСПЕЧЕНИЕ ПОЖАРНОЙ БЕЗОПАСНОСТИ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ ПОВЫШЕННОЙ ОПАСНОСТИ

6 АНАЛИЗ ПОЖАРНОЙ ОПАСНОСТИ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

7 ПОРЯДОК ОБЕСПЕЧЕНИЯ ПОЖАРНОЙ БЕЗОПАСНОСТИ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ, ОТЛИЧНЫХ ОТ ПРОЦЕССОВ ПОВЫШЕННОЙ ПОЖАРНОЙ ОПАСНОСТИ

ПРИЛОЖЕНИЕ А

МЕТОД РАСЧЕТА ИЗБЫТОЧНОГО ДАВЛЕНИЯ, РАЗВИВАЕМОГО ПРИ СГОРАНИИ ГАЗОПАРОВОЗДУШНЫХ СМЕСЕЙ В ПОМЕЩЕНИИ

А.1 Выбор и обоснование расчетного варианта

А.2 Расчет избыточного давления для горючих газов, паров легковоспламеняющихся и горючих жидкостей

Таблица А.1

А.3 Горючие пыли

Z = 0,5 F, (A.22)

Пример

ПРИЛОЖЕНИЕ Б

МЕТОД РАСЧЕТА РАЗМЕРОВ ЗОН, ОГРАНИЧЕННЫХ НИЖНИМ КОНЦЕНТРАЦИОННЫМ ПРЕДЕЛОМ РАСПРОСТРАНЕНИЯ ПЛАМЕНИ (НКПР) ГАЗОВ И ПАРОВ

Б.1 Метод расчета зон, ограниченных НКПР газов и паров, при аварийном поступлении горючих газов и паров ненагретых легковоспламеняющихся жидкостей в открытое пространство при неподвижной воздушной среде

Примеры

Б.2 Метод расчета размеров зон, ограниченных НКПР газов и паров, при аварийном поступлении горючих газов и паров ненагретых легковоспламеняющихся жидкостей в помещение

Примеры

ПРИЛОЖЕНИЕ В

МЕТОД РАСЧЕТА ИНТЕНСИВНОСТИ ТЕПЛОВОГО ИЗЛУЧЕНИЯ ПРИ ПОЖАРАХ ПРОЛИВОВ ЛВЖ И ГЖ

B = (1 + S2) / (2S), (B.10)

А = (2,722 + 4,102 + 1) / (2 · 4,1) = 3,08,

ПРИЛОЖЕНИЕ Г

МЕТОД РАСЧЕТА РАЗМЕРОВ ЗОН РАСПРОСТРАНЕНИЯ ОБЛАКА ГОРЮЧИХ ГАЗОВ И ПАРОВ ПРИ АВАРИИ

Г.1 Сущность метода

ПРИЛОЖЕНИЕ Д

МЕТОД РАСЧЕТА ИНТЕНСИВНОСТИ ТЕПЛОВОГО ИЗЛУЧЕНИЯ И ВРЕМЕНИ СУЩЕСТВОВАНИЯ «ОГНЕННОГО ШАРА»

ПРИЛОЖЕНИЕ Е

МЕТОД РАСЧЕТА ПАРАМЕТРОВ ВОЛНЫ ДАВЛЕНИЯ ПРИ СГОРАНИИ ГАЗОПАРОВОЗДУШНЫХ СМЕСЕЙ В ОТКРЫТОМ ПРОСТРАНСТВЕ

ПРИЛОЖЕНИЕ Ж

МЕТОД РАСЧЕТА ПАРАМЕТРОВ ВОЛНЫ ДАВЛЕНИЯ ПРИ ВЗРЫВЕ РЕЗЕРВУАРА С ПЕРЕГРЕТОЙ ЖИДКОСТЬЮ ИЛИ СЖИЖЕННЫМ ГАЗОМ ПРИ ВОЗДЕЙСТВИИ НА НЕГО ОЧАГА ПОЖАРА

ПРИЛОЖЕНИЕ И

МЕТОД РАСЧЕТА ПАРАМЕТРОВ ИСПАРЕНИЯ ГОРЮЧИХ НЕНАГРЕТЫХ ЖИДКОСТЕЙ И СЖИЖЕННЫХ УГЛЕВОДОРОДНЫХ ГАЗОВ

Таблица И.1

ПРИЛОЖЕНИЕ К

МЕТОДЫ РАСЧЕТА ТЕМПЕРАТУРНОГО РЕЖИМА ПОЖАРА В ПОМЕЩЕНИЯХ ЗДАНИЙ РАЗЛИЧНОГО НАЗНАЧЕНИЯ

К.1 Условные обозначения

К.2 Определение интегральных теплотехнических параметров объемного свободно развивающегося пожара в помещении

К.3 Расчет температурного режима в помещении с учетом начальной стадии пожара при горении твердых горючих и трудногорючих материалов

ПРИЛОЖЕНИЕ Л

МЕТОД РАСЧЕТА ТРЕБУЕМОГО ПРЕДЕЛА ОГНЕСТОЙКОСТИ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ

Л.1 Расчет требуемых пределов огнестойкости

Примеры

ПРИЛОЖЕНИЕ М

МЕТОД РАСЧЕТА РАЗМЕРА СЛИВНЫХ ОТВЕРСТИЙ

М.1 Введение

М.2 Расчет площади сливных отверстий

Пример

Таблица М.2

ПРИЛОЖЕНИЕ Н

МЕТОД РАСЧЕТА ПРОТИВОПОЖАРНЫХ ПАРОВЫХ ЗАВЕС

Н.1 Общие требования

Н.2 Порядок расчета параметров паровой завесы

ПРИЛОЖЕНИЕ П

МЕТОД РАСЧЕТА ФЛЕГМАТИЗИРУЮЩИХ КОНЦЕНТРАЦИЙ (ФЛЕГМАТИЗАЦИЯ В ПОМЕЩЕНИЯХ И ТЕХНОЛОГИЧЕСКИХ АППАРАТАХ)

Таблица П.1

ПРИЛОЖЕНИЕ Р

ВЫБОР РАЗМЕРОВ ОГНЕГАСЯЩИХ КАНАЛОВ ОГНЕПРЕГРАДИТЕЛЕЙ

Таблица Р.1

Таблица Р.2

Таблица Р.3

ПРИЛОЖЕНИЕ С

ВОДЯНОЕ ОРОШЕНИЕ ТЕХНОЛОГИЧЕСКИХ АППАРАТОВ

ПРИЛОЖЕНИЕ Т

МЕТОД ОПРЕДЕЛЕНИЯ ТРЕБУЕМОЙ БЕЗОПАСНОЙ ПЛОЩАДИ РАЗГЕРМЕТИЗАЦИИ

Т.1 Сущность метода

Т.2 Формулы для расчета безопасной площади разгерметизации технологического оборудования с газопаровыми смесями

Т.3 Степень влияния различных параметров на безопасную площадь разгерметизации технологического оборудования с газопаровыми смесями

Т.4 Зависимость фактора турбулентности от условий развития взрыва в технологическом оборудовании с газопаровыми смесями при точечном источнике зажигания

Т.5 Определение нормальной скорости распространения пламени и термодинамических параметров

Т.6 Формулы для расчета безопасной площади разгерметизации оборудования и помещений, в которых обращается горючая пыль

Таблица Т.3

Таблица Т.4

Т.7 Формулы для расчета безопасной площади разгерметизации оборудования и помещений, в которых обращаются гибридные смеси

Пример

ПРИЛОЖЕНИЕ У

ТРЕБОВАНИЯ К ПРОТИВОПОЖАРНЫМ ПРЕГРАДАМ

Таблица У.1

ПРИЛОЖЕНИЕ Ф

ТРЕБОВАНИЯ К ОГНЕЗАЩИТЕ ОГРАЖДЕНИЙ ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ

Таблица Ф.1

Таблица Ф.2

ПРИЛОЖЕНИЕ Х

ЗАЩИТА ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ УСТАНОВКАМИ ПОЖАРОТУШЕНИЯ

Таблица Х.2

ПРИЛОЖЕНИЕ Ц

ТРЕБОВАНИЯ К СРЕДСТВАМ ПОЖАРНОЙ СВЯЗИ И СИГНАЛИЗАЦИИ

ПРИЛОЖЕНИЕ Ш

МЕТОД РАСЧЕТА ИНДИВИДУАЛЬНОГО И СОЦИАЛЬНОГО РИСКА ДЛЯ ПРОИЗВОДСТВЕННЫХ ЗДАНИЙ

Ш.1 Сущность метода

Ш.2 Основные расчетные зависимости

Ш.3 Оценка индивидуального риска

Ш.4 Расчет социального риска

ПРИЛОЖЕНИЕ Э

МЕТОД ОЦЕНКИ ИНДИВИДУАЛЬНОГО РИСКА ДЛЯ НАРУЖНЫХ ТЕХНОЛОГИЧЕСКИХ УСТАНОВОК

ПРИЛОЖЕНИЕ Ю

МЕТОД ОЦЕНКИ СОЦИАЛЬНОГО РИСКА ДЛЯ НАРУЖНЫХ ТЕХНОЛОГИЧЕСКИХ УСТАНОВОК

ПРИЛОЖЕНИЕ Я

БИБЛИОГРАФИЯ

Содержание

Рейтинг@Mail.ru