ГОСТ 27710-88 
Таблица 6. Таблица 7. ГОСТ 27710-88 
Таблица 6. Таблица 7.

ГОСТ 27710-88 => Таблица 6. Таблица 7.

 
Пожарная безопасность - главная
Написать нам
ГОСТы, документы

 

Пожарная безопасность ->  Гост. безопасность, гост пожарная техника, гост прочие ->  ГОСТ 27710-88 -> 
1
2
3
4
5
6
7
8
9
10
11
12
текст целиком
 

Таблица 6

 

Количество степеней свободы f

0,95 квантилей распределения

Количество степеней свободы

0,95 квантилей распределения

 

t

 

t

1

3,8

6,31

13

22,4

1,77

2

6,0

2,92

14

23,7

1,76

3

7,8

2,35

15

25,0

1,75

4

9,5

2,13

16

26,3

1,75

5

11,1

2,02

17

27,6

1,74

6

12,6

1,94

18

28,9

1,73

7

14,1

1,90

19

30,1

1,73

8

15,5

1,86

20

31,4

1,73

9

16,9

1,83

25

37,7

1,71

10

18,3

1,81

30

43,8

1,70

11

19,7

1,80

40

55,8

1,68

12

21,0

1,78

50

67,5

1,68

 

 

 

100

124,3

1,66

 

 

 

500

553,2

1,65

 

Таблица 7

 

Количество степеней свободы

0,95 квантилей распределения для F при количестве степеней свободы числителя fn

Количество степеней свободы

0,95 квантилей распределения для F при количестве степеней свободы числителя fn

знаменателя fd

1

2

3

4

5

знаменателя fd

1

2

3

4

5

1

161

200

216

225

230

14

4,6

3,7

3,3

3,1

3,0

2

19

19

19

19

19

15

4,5

3,7

3,3

3,1

2,9

3

10,1

9,6

9,3

9,1

9,0

16

4,5

3,6

3,2

3,0

2,9

4

7,7

6,9

6,6

6,4

6,3

17

4,5

3,6

3,2

3,0

2,8

5

6,6

5,8

5,4

5,2

5,1

18

4,4

3,6

3,2

2,9

2,8

6

6,0

5,1

4,8

4,5

4,4

19

4,4

3,5

3,1

2,9

2,7

7

5,6

4,7

4,4

4,1

4,0

20

4,4

3,5

3,1

2,9

2,7

8

5,3

4,5

4,1

3,8

3,7

25

4,2

3,4

3,0

2,8

2,6

9

5,1

4,3

3,9

3,6

3,5

30

4,2

3,3

2,9

2,7

2,5

10

5,0

4,1

3,7

3,5

3,3

40

4,1

3,2

2,8

2,6

2,5

11

4,8

4,0

3,6

3,4

3,2

50

4,0

3,2

2,8

2,6

2,4

12

4,8

3,9

3,5

3,3

3,1

100

3,9

3,1

2,7

2,5

2,3

13

4,7

3,8

3,4

3,2

3,0

500

3,9

3,0

2,6

2,4

2,2

 

Предполагаемый температурный диапазон, соответствующий экстраполированному времени до разрушения, равному 20000 ч, от 150 до 159 °С.

Из табл. 1 выбирают 3 температуры воздействия °С и периоды воздействия tp = 48 при 210°С, 168 ч при 190°С и 672 ч при 170°С.

Подготавливают около 200 образцов. 10 образцов, выбранных произвольно, подвергают старению в течение 48 ч при 170°С, после чего их испытывают, чтобы определить начальную величину предела прочности при растяжении. Оставшиеся образцы делят произвольно на три группы в термостатах при температурах 212, 190 и 171 °С. В конце каждого периода старения на 5 образцах определяют предел прочности при растяжении, после чего их выбрасывают. Предел прочности при растяжении выражают в виде lg p - логарифма отношения измеренной величины к начальному значению. Тогда критерий конечной точки принимает вид lg рe = lg 0,5 =0,6990-1.

Полученные таким образом величины lg p приведены в табл. 11 для 4 сроков старения, после которых среднее значение измерений величины проверяемой характеристики наиболее близко к критерию конечной точки, как показано на черт. 5, для случая = 212 °С.

Для более точного построения зависимости изменения проверяемой характеристики от времени старения при каждой из трех температур результаты испытаний обрабатывают по методу наименьших квадратов следующим образом.

Рассчитывают коэффициенты в уравнении

у = а +

где y - lg p.

х - продолжительность старения до момента измерения tm;

, (29)

, (30)

где

а

,

k = 4, количество сроков старения, после которых использованы результаты испытаний для построения графика изменения свойства при каждой температуре (i = l, 2, 3, 4) и ni = 5, количество образцов, испытанных после каждого срока старения (j = 1, 2,..., 5).

Расчеты приведены в табл. 12. По результатам расчета проводят линию наилучшего совпадения с экспериментальными точками.

Для каждого образца через точку, выражающую результат его испытания, проводят линию, параллельную линии наилучшего совпадения, как показано на черт. 5 для случая = 212 °С.

Время, соответствующее точке пересечения линии отдельного образца с линией критерия конечной точки, принимают за время до разрушения этого образца. Время до разрушения образца вычисляют по формуле

, (31)

где tm - время до момента измерения и lg ре =0,6990-1 - критерий конечной точки.

 

1
2
3
4
5
6
7
8
9
10
11
12
текст целиком

 

Краткое содержание:

ГОСТ 27710-88

(СТ СЭВ 4127-83)

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

МАТЕРИАЛЫ ЭЛЕКТРОИЗОЛЯЦИОННЫЕ

Общие требования к методу испытания на нагревостойкость

OKСТУ 3409

6. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

1. ОБОЗНАЧЕНИЯ И ОПРЕДЕЛЕНИЯ

2. СУЩНОСТЬ МЕТОДА

3. ОБЩИЕ УКАЗАНИЯ

4. ОБРАЗЦЫ

Таблица 1

5. АППАРАТУРА

6. ПРОВЕДЕНИЕ ИСПЫТАНИЯ

7. ОБРАБОТКА РЕЗУЛЬТАТОВ ИСПЫТАНИЯ

Способ определения медианы срока службы образцов М при циклическом старении образцов

Способ определения среднего срока службы образцов t1-t4, из кривых старения при непрерывном старении

График срока службы эмаль-провода

ТИ: 132

ДН 132/148 (140)

8. ПРОТОКОЛ ИСПЫТАНИЯ

ПРИЛОЖЕНИЕ 1

ПЕРЕЧЕНЬ МАТЕРИАЛОВ И ИСПЫТАНИЙ, ПРИМЕНЯЕМЫХ ДЛЯ ОПРЕДЕЛЕНИЯ НАГРЕВОСТОЙКОСТИ

1 Общие сведения

Таблица 2

Таблица 3.

2. Руководство по применению табл. 2 и 3

ПРИЛОЖЕНИЕ 2

РАСЧЕТ ДИАПАЗОНОВ НАГРЕВОСТОЙКОСТИ

1. Область распространения

2. Общие положения

3. Методы и результаты испытаний

4. Статистические расчеты и решения

5. Примеры расчета диапазона нагревостойкости

Таблица 4

ДН: 162/185 (182).

График сроков службы

Таблица 5

Таблица 6

Таблица 7

Таблица 8

Таблица 9

Таблица 10

Таблица 11

Определение предлагаемого времени до разрушения образца (разрушающие испытания)

Таблица 12

Таблица 13

ДН:156/174(173).

Таблица 14

ПРИЛОЖЕНИЕ 3

СТАТИСТИЧЕСКИЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК НАГРЕВОСТОЙКОСТИ

1. Общие положения

2. Статистические методы

3. Неразрушающие методы измерений и проверочные испытания

4. Разрушающие испытания