Тип сечения |
Схема сечения |
Приведенные гибкости Х составных стержней сквозного сечения |
||
|
|
с планками при |
с решетками |
|
|
|
Isl /(Ibb)<5 |
Isl /(Ibb)>5 |
|
1 |
(6) |
(9) |
(12) |
|
2 |
(7) |
(10) |
(13) |
|
3 |
(8) |
(11) |
(14) |
Обозначения, принятые в табл. 16:
- наибольшая гибкость всего стержня;
- гибкости отдельных ветвей при изгибе их в плоскостях, перпендикулярных осям соответственно 1-1, 2-2 и 3-3, на участках между приваренными планками (в свету) или между центрами крайних болтов или заклепок;
А - площадь сечения стержня;
Ad1,Ad2 -площади сечения раскосов решеток (при крестовой решетке - двух раскосов), лежаших в плоскостях, перпендикулярных осям соответственно 1-1 и 2-2;
Ad - площадь сечения раскоса решетки (при крестовой решетке - двух раскосов), лежащей в плоскости одной грани (для трехгранного равностороннего стержня);
- коэффициенты, определяемые по формуле
a,b,l - размеры, принимаемые по черт. 3,a и черт. 4;
n,n1 - коэффициенты, определяемые соответственно по формулам:
где - моменты инерции сечения ветвей относительно осей соответственно 1-1 и 3-3 (для сечений типов 1 и 3 ) ;
- моменты инерции сечения двух уголков относительно осей соответственно 1-1 и 2-2 (для сечения типа 2);
Is- момент инерции сечения одной планки относительно собственной оси х-х (черт. 4) ;
Is1,Is2 - моменты инерции сечения одной из планок, лежащих в плоскостях, перпендикулярных осям соответственно 1-1 и 2- 2 (для сечения типа 2).
a) б)
Черт. 3. Схема решетки
a - раскосной; b - крестовой с распорками
Черт. 4. Составной стержень на планках
4.7. Расчет соединительных элементов (планок, решеток) сжатых составных стержней сквозного сечения следует выполнять на условную поперечную силу Qfic, принимаемую постоянной по всей длине стержня и определяемую по формуле
где N - продольное усилие в составном стержне;
- коэффициент продольного изгиба, принимаемый для составного сквозного стержня в плоскости соединительных элементов.
Условную поперечную силу Qfic следует распределять при наличии:
только соединительных планок (решеток) - поровну между планками (решетками), лежащими в плоскостях, перпендикулярных оси, относительно которой производится проверка устойчивости;
сплошного листа и соединительных планок (решеток) - пополам между листом и планками(решетками), лежащими в плоскостях, параллельных листу.
При расчете равносторонних трехгранных составных стержней условную поперечную силу Qfic ,приходящуюся на систему соединительных элементов, расположенных в одной плоскости, следует принимать равной 0,8 Qfic.
4.8. Расчет соединительных планок и их прикреплений (см. черт. 4) следует выполнять как расчет элементов безраскосных ферм по формулам:
на силу F, срезающую планку:
на момент M1, изгибающий планку в ее плоскости:
где Qs - условная поперечная сила, приходящаяся на планку одной грани;
l - расстояние между центрами планок;
b - расстояние между осями ветвей.
4.9. Расчет соединительных решеток следует выполнять как расчет решеток ферм. При расчете перекрестных раскосов крестовой решетки с распорками (см. черт. 3, б) необходимо учитывать дополнительное усилие Nad, возникающее в каждом раскосе от обжатия поясов и определяемое по формуле
где N - усилие в одной ветви стержня;
Ad - площадь сечения одного раскоса;
A1 - площадь сечения одной ветви;
- коэффициент, определяемый по формуле
a,l,b - размеры, приведенные на черт. 3, б.
4.10. Расчет стержней, предназначенных для уменьшения расчетной длины сжатых элементов, следует выполнять на усилия, равные условной поперечной силе в основном сжатом элементе, определяемой по формуле ( 15).
4.11. Расчет на прочность элементов, изгибаемых в одной из главных плоскостей, следует выполнять по формулам:
При наличии ослабления отверстиями для заклепок или болтов значения касательных напряжений в формуле (21) следует умножать на величину отношения
где а - шаг отверстий;
d - диаметр отверстия.
4.12. Для стенок балок, рассчитываемых по формуле (20), должны быть выполнены условия:
где - нормальные напряжения в срединной плоскости стенки, параллельные оси балки;
- нормальные напряжения в срединной плоскости стенки, перпендикулярные оси балки, в том числе
, определяемое по формуле (1) обязательного приложения 5:
- среднее касательное напряжение,вычисляемое с учетом формулы (22) ; t, h - соответственно толщина и высота стенки.
Напряжения , и
следует определять в одной и той же точке стенки балки и принимать в формуле (23) каждое со своим знаком.
4.13. Расчет на устойчивость балок двутаврового сечения, изгибаемых в плоскости стенки, следует выполнять по формуле
- коэффициент, определяемый по обязательному приложению 3.
При определении значения за расчетную длину балки lef следует принимать расстояния между точками закреплений сжатого пояса от поперечных смещений; при отсутствии связей lef=l (где l -пролет балки). За расчетную длину консоли следует принимать: lef= l при отсутствии закрепления сжатого пояса на конце консоли в горизонтальной плоскости (здесь l - длина консоли); расстояние между точками закреплений сжатого пояса в горизонтальной плоскости при закреплении пояса на конце и по длине консоли.
Устойчивость балок не требуется проверять:
а) при передаче нагрузки через сплошной жесткий настил, непрерывно опирающийся на сжатый пояс балки и надежно с ним связанный (плоский и профилированный металлический настил, волнистая сталь и т. п.) ;
б) при отношении расчетной длины балки lef к ширине сжатого пояса b, не превышающем значений, определяемых по формулам табл. 17 для балок симметричного двутаврового сечения и с более развитым сжатым поясом, для которых ширина растянутого пояса составляет не менее 0,75 ширины сжатого пояса.
Oбозначения, принятые в табл. 17:
b,t - соответственно ширина и толщина сжатого пояса;
h - расстояние (высота) между осями поясных листов. ,
Примечание. Для балок с поясными соединениями на заклепках и высокопрочных болтах значения , получаемые при расчете по формулам табл. 17, следует умножать на коэффициент 1,2.
4.14. Расчет на прочность элементов, изгибаемых в двух главных плоскостях, следует выполнять по формуле
где x,y - координаты рассматриваемой точки сечения относительно его главных осей. В балках, рассчитываемых по формуле (28), значения напряжений в стенке балки следует проверять по формулам (21) и (23) в двух главных плоскостях изгиба.
При выполнении требований п.4.13а балки, изгибаемые в двух плоскостях, на устойчивость не проверяются.
4.15. Расчет на прочность сплошностенчатых внецентренно сжатых, сжато-изгибаемых, внецентренно растянутых и растянуто-изгибаемых элементов следует выполнять по формуле
где x, у - координаты рассматриваемой точки сечения относительно его главных осей.
В составных сквозных стержнях каждую ветвь необходимо проверять по формуле (29) при соответствующих значениях N, Мx, Мy, вычисленных для данной ветви.
4.16. Расчет на устойчивость внецентренно сжатых и сжато-изгибаемых элементов следует выполнять как в плоскости действия момента (плоская форма потери устойчивости), так и из плоскости действия момента (изгибно-крутильная форма потери устойчивости).
Расчет на устойчивость внецентренно сжатых и сжато-изгибаемых элементов постоянного сечения в плоскости действия момента, совпадающей с плоскостью симметрии, следует выполнять по формуле
В формуле (30) коэффициент следует определять:
а) для сплошностенчатых стержней - по табл. 1 обязательного приложения 4 в зависимости от условной гибкости и приведенного относительного эксцентриситета mef. определяемого по формуле
где - коэффициент влияния формы сечения, определяемый по табл. 3 обязательного приложения 4;
- относительный эксцентриситет (здесь е - эксцентриситет; Wc -момент сопротивления сечения для наиболее сжатого волокна).
Расчет на устойчивость выполнять не требуется для сплошностенчатых стержней при тef >10;
б) для сквозных стержней с решетками или планками, расположенными в плоскостях, параллельных плоскости изгиба, - по табл. 2 обязательного приложения 4 в зависимости от условной приведенной гибкости, определяемой по формуле
и относительного эксцентриситета т, определяемого по формулам
где x1,y1расстояния соответственно от оси у-у или х-х до оси наиболее сжатой ветви, но не менее расстояния до оси стенки ветви.
4.17. Расчетные значения изгибающих моментов М, необходимые для вычисления эксцентриситета
а) для стержней постоянного сечения рамных систем - наибольшему моменту в пределах длины стержней;
б) для ступенчатых стержней - наибольшему моменту на длине участка постоянного сечения;
в) для консолей - моменту в заделке, но не менее момента в сечении, отстоящем на треть длины стержня от заделки;
г) для сжатых стержней с шарнирно-опертыми концами и сечениями, имеющими одну ось симметрии, совпадающую с плоскостью изгиба, - моменту, определяемому по формулам табл. 18.
Для сжатых стержней с шарнирно-опертыми концами и сечениями, имеющими две оси симметрии, приведенные относительные эксцентриситеты тef следует определять по табл. 4 обязательного приложения 4.
Относительный эксцентриситет, соответствующий Мтах |
Расчетные значения М при условной гиб кости стержня
|
|
|
||
M=M1 |
||
Обозначения, принятые в табл. 18:
Mmax - наибольший изгибающий момент в пределах длины стержня;
M1 - наибольший изгибающий момент в пределах средней трети длины стержня, но не менее 0,5 Мmax,;
m - относительный эксцентриситет, определяемый по формуле
Примечание. Во всех случаях следует принимать М>0,5Мmax.
4.18. Расчет на устойчивость внецентренно сжатых элементов постоянного сечения из плоскости действия момента при их изгибе в плоскости наибольшей жесткости (Ix>Iy), совпадающей с плоскостью симметрии, следует выполнять по формуле
где с - коэффициент, вычисляемый по формуле (35).
4.19. Коэффициент с следует определять по формуле
где - коэффициенты, принимаемые по табл. 19.
При определении mx , за расчетный момент Му следует принимать:
а) для стержней с шарнирно-опертыми концами, закрепленными от смещения перпендикулярно плоскости действия момента, - максимальный момент в пределах средней трети длины (но не менее половины момента, наибольшего на длине стержня) ;
б) для консолей - момент в заделке (но не менее момента в сечении, отстоящем от заделки на треть длины стержня).
Краткое содержание:
2. МАТЕРИАЛЫ ДЛЯ КОНСТРУКЦИЙ И СОЕДИНЕНИЙ
3. РАСЧЕТНЫЕ ХАРАКТЕРИСТИКИ МАТЕРИАЛОВ И СОЕДИНЕНИЙ
4. РАСЧЕТ ЭЛЕМЕНТОВ АЛЮМИНИЕВЫХ КОНСТРУКЦИЙ НА ОСЕВЫЕ СИЛЫ И ИЗГИБ
ЦЕНТРАЛЬНО-РАСТЯНУТЫЕ И ЦЕНТРАЛЬНО-СЖАТЫЕ ЭЛЕМЕНТЫ
ЭЛЕМЕНТЫ. ПОДВЕРЖЕННЫЕ ДЕЙСТВИЮ ОСЕВОЙ СИЛЫ С ИЗГИБОМ
5. РАСЧЕТНАЯ ДЛИНА И ПРЕДЕЛЬНАЯ ГИБКОСТЬ ЭЛЕМЕНТОВ АЛЮМИНИЕВЫХ КОНСТРУКЦИЙ
6. ПРОВЕРКА УСТОЙЧИВОСТИ СТЕНОК И ПОЯСНЫХ ЛИСТОВ ИЗГИБАЕМЫХ И СЖАТЫХ ЭЛЕМЕНТОВ
СТЕНКИ ЦЕНТРАЛЬНО-, ВНЕЦЕНТРЕННО СЖАТЫХ И СЖАТО-ИЗГИБАЕМЫХ ЭЛЕМЕНТОВ
7. РАСЧЕТ ЭЛЕМЕНТОВ КОНСТРУКЦИЙ С ПРИМЕНЕНИЕМ ТОНКОЛИСТОВОГО АЛЮМИНИЯ
ЭЛЕМЕНТЫ. РАБОТАЮЩИЕ НА СЖАТИЕ И ИЗГИБ
ЭЛЕМЕНТЫ МЕМБРАННЫХ КОНСТРУКЦИЙ
8. РАСЧЕТ СОЕДИНЕНИЙ КОНСТРУКЦИЙ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ
МОНТАЖНЫЕ СОЕДИНЕНИЯ НА ВЫСОКОПРОЧНЫХ СТАЛЬНЫХ БОЛТАХ
СОЕДИНЕНИЯ С ФРЕЗЕРОВАННЫМИ ТОРЦАМИ
ПОЯСНЫЕ СОЕДИНЕНИЯ В СОСТАВНЫХ БАЛКАХ
9. ПРОЕКТИРОВАНИЕ АЛЮМИНИЕВЫХ КОНСТРУКЦИЙ
КОНСТРУИРОВАНИЕ СВАРНЫХ СОЕДИНЕНИЙ
КОНСТРУИРОВАНИЕ ЗАКЛЕПОЧНЫХ И БОЛТОВЫХ СОЕДИНЕНИЙ
МАТЕРИАЛЫ И ИХ ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ ДЛЯ АЛЮМИНИЕВЫХ КОНСТРУКЦИЙ
Физические характеристики алюминия
Алюминиевые полуфабрикаты, применяемые для строительных конструкций
Коэффициенты для балок двутаврового сечения с двумя осями симметрии
Коэффициенты для консолей двутаврового сечения с двумя осями симметрии
Коэффициент f в формуле (4) настоящего приложения
РАСЧЕТ ВНЕЦЕНТРЕННО СЖАТЫХ И СЖАТО-ИЗГИБАЕМЫХ ЭЛЕМЕНТОВ
Коэффициенты влияния формы сечения
Приведенные относительные эксцентриситеты mef для стержней с шарнирно-опертыми концами
РАСЧЕТ НА УСТОЙЧИВОСТЬ СТЕНОК БАЛОК ПРИ МЕСТНОЙ НАГРУЗКЕ НА ВЕРХНЕМ ПОЯСЕ
РАСЧЕТ НА УСТОЙЧИВОСТЬ НАКЛОННЫХ ГРАНЕЙ ЛИСТОВ С ТРАПЕЦИЕВИДНЫМ ГОФРОМ
РАСЧЕТНАЯ НЕСУЩАЯ СПОСОБНОСТЬ НА СРЕЗ СВАРНЫХ ТОЧЕК