Математическое моделирование пожаров 
Определение количественного значения критерия пожарной опасности. Сравнение... Математическое моделирование пожаров 
Определение количественного значения критерия пожарной опасности. Сравнение...

Математическое моделирование пожаров => Определение количественного значения критерия пожарной опасности. Сравнение расчетных значений критерия пожарной...

 
Пожарная безопасность - главная
Написать нам
ГОСТы, документы

 

Пожарная безопасность ->  Рекомендации ->  Математическое моделирование пожаров -> 
1
2
3
текст целиком
 

Определение количественного значения критерия пожарной опасности

 

Итак, в соответствии с результатами расчетов, время блокирования эвакуационных выходов составляет:

5-й этаж - t5,1 = 120 с; t5,2 = 180 с;

4-й этаж - t4,1 = 180 с; t4,2 = 180 с;

3-й этаж - t3,1 = 180 с; t3,2 = 240 с;

2-й этаж - t2,1 = 240 с; t2,2 = 240 с; t2,3 = 240 с;

1-й этаж - t1,1 = 240 с; t1,2 = 240 с.

 

Сравнение расчетных значений критерия пожарной опасности с критическими значениями

 

Таким образом, в результате проведенного расчета получены количественные значения критерия оценки пожарной опасности. Данные значения необходимо сравнить с критическими, а именно со значениями времени эвакуации людей, полученными согласно методике ГОСТ 12.1.004-91*, приложение 2, п. 2.4. Значения расчетного времени эвакуации и времени блокирования эвакуационных путей для каждого этажа здания приведены в табл. 1.

 

Таблица 1

 

Наименование участка эвакуации

Количество людей, чел.

Расчетное время эвакуации tp, с

Время блокирования эвакуационных путей tбл, с

Выполнение условия

tp £ tбл

Первый этаж

34

103

240

Выполняется

Второй этаж

48

115

240

Выполняется

Третий этаж

96

104

240

Выполняется

Четвертый этаж

59

86

180

Выполняется

Пятый этаж

18

79

180

Выполняется

 

Сравнение значений, приведенных в таблице, показывает, что условия безопасной эвакуации людей выполняются.

 

Анализ правильности выбора сценария

 

Полученные в результате моделирования данные о динамике температурного режима не дают оснований полагать, что выбранный сценарий не является наихудшим. Следовательно, в корректировке сценария развития очага пожара нет необходимости.

 

Заключение о пожарной опасности объекта

 

Результаты расчетной оценки пожарной опасности объекта показали, что для обеспечения безопасной эвакуации людей не требуется проведения дополнительных противопожарных мероприятий.

 

 

ЛИТЕРАТУРА

 

1. ГОСТ 12.1.004-91* Пожарная безопасность. Общие требования.

2. СНиП 21-01-97* Пожарная безопасность зданий и сооружений.

3. Расчет необходимого времени эвакуации людей из помещений при пожаре: Рекомендации. - М.: ВНИИПО МВД СССР, 1989. - 22 с.

4. Рыжов A.M. Моделирование пожаров в помещениях с учетом горения в условиях естественной конвекции // Физика горения и взрыва. - 1991. - Т. 27, № 3. - С. 40-47.

5. Computer modelling of aerodynamics and movement of aerosol in volumes of complex geometry / L.P. Kamenshchikov, V.I. Bykov, S.P. Amel'chugov, A.A. Dekterev // Proc. of the 2nd Int. Seminar on Fire and Explosion Hazard of Substances and Venting of Deflagrations. Moscow, 1997. - P. 512-521.

6. Cox G., Kumar S. Field Modelling of Fire in Forced Ventilated Enclosures // Comb. Science and Tech. - 1987. - Vol. 52. - P. 7-23.

7. Lewis M.J., Moss M.B. and Rubini P.A. (1997) CFD modelling of combustion and heat transfer in compartment fires // Proc. of V Int. Symp. On Fire Safety Science. - P. 463-474.

8. Патанкар С. Численные методы решения задач теплообмена и динамика жидкостей. - М.: Энергоатомиздат, 1984. -150 с.

9. Провести исследования и разработать методические рекомендации применения фундаментального полевого метода моделирования динамики развития пожаров и распространения их опасных факторов в помещениях зданий различного назначения: Отчет о НИР (аннот.) // ВНИИПО МВД России. -П.3.4.Д.002.2001; Код "Фундамент". - Этап 1. - М., 2001. - 51 с.

10. Провести фундаментальные исследования процесса развития пожара внутри и вне помещений и зданий различного назначения с использованием методов вычислительной гидродинамики, изучить закономерности процесса и сформулировать предложения в НПБ: Отчет о НИР (заключ.) // ВНИИПО МВД России. - П.3.4.Д.001.98, Код "Закономерности". - М., 2000. - 144 с.

11. Сох G. Combustion Fundamentals of Fire. - London: Academic Press, 1995. - 476 p.

12. Baum H.R., McGrattan K.B., Rehm R.G. Three dimensional simulations of fire plume dynamics // Proc. of V Int. Sump. "Fire Safety Science", 1997. - P. 511-522.

13. Magnussen B.F. and Hjertager B.H. (1976) On mathematical modelling of turbulent combustion with special emphasis on soot formation and combustion. 16th Sump. (Int.) Combust. The Combustion Institute. - Pittsburgh, PA. - P. 719-729.

14. Peters N. (1986) Laminar flamelet concept in turbulent combustion. 21th Symp. (Int.) Combust. The Combustion Institute. - Pittsburgh, PA. - P. 1231-1250/

15. Patankar S.V. and Spalding D.B. (1973) A computer model for three-dimensional flow in furnaces. 14th Symp. (Int.) Combust. The Combustion Institute. - Pittsburgh, PA. - P. 605-614.

16. Tuovinen H. (1994) Modelling of laminar diffusion flames in vitiated environment, Proc. of IV Int. Symp. on Fire Safety Science. - P. 113-124.

17. Lockwood F.C. and Shah N.G. (1981) A new radiation solution method for incorporation in general combustion prediction procedures. 18th Symp. (Int.) Combust. The Combustion Institute. -Pittsburgh, PA. - P. 1405-1414.

18. Методы расчета температурного режима пожара в помещениях зданий различного назначения: Рекомендации. - М.: ВНИИПО МВД СССР, 1988. - 56 с.

19. Термогазодинамика пожаров в помещениях / В.М. Астапенко, Ю.А. Кошмаров, И.С. Молчадский, А.Н. Шевляков. - М.: Стройиздат, 1988. - 448 с.

20. Белов И.А., Исаев С.А., Коробков В.А. Задачи и методы расчета отрывных течений несжимаемой жидкости. - Л.: Судостроение, 1989. - 150 с.

21. Jayatillake C.L.V. The influence of Prandtl number and surface roughness on the resistance of laminar sublayer to momentum and heat transfer // Progress in Heat and Mass Transfer. - 1969. - № 1. - P. 193-329.

22. Tuovinen H. (1997) CFD modelling of underventilated fires // Proc. of the 2nd Int. Seminar on Fire and Explosion Hazard of Substances and Venting of Deflagrations, Moscow, 1997. - P. 113-124.

23. Weckman E.J. and Strong A.B. Experimental Investigation of the Turbulence Structure of Medium Scale Methanol Pool Fires // Combustion and Flame. - 1996. - Vol. 105, № 3. - P. 245-266.

24. Карпов А.В., Крюков А.П., Рыжов A.M. Полевое моделирование процессов тепло- и массопереноса в пламени и восходящей свободноконвективной струе //Пожаровзрывобезопасность. - 2001. - Т. 10, № 2. - С. 35-41.

25. Modelling thermal radiation in open liquid pool fires /K.C. Adiga, D.E. Ramaker, PA. Tatem, F.W. Williams // Proc. of III Int Symp. on Fire Safety Scince. - 1989. - P. 241-250.

26. Turbulent diffusion flames with large buoyancy effects E. Gengembre, P. Cambray, D. Karmed and J.C. Bellet // Combustion Science and Technology. - 1984. - Vol. 41. - P. 55-67.

27. Modelling Buoyant Turbulent Diffusion Flames in Coherent Flame-sheet model / С.A. Blunsdon, Z. Beeri, W.M.G. Malalesekera, J.C. Dent // Symposium on Fire and Combustion, ASME Winter Annual Meeting Chicago: ASME. - 1994. - P. 79-88.

28. Welch S., Rubini P. SOFIE, Simulations of Fires in Enclosures, User Guide. - Cranfield University, 1996.

 

 

 

 

 

 

 

 

 

СОДЕРЖАНИЕ

 

Список обозначений

Введение

1. Общие положения

2. Область применения

3. Основы полевого метода моделирования пожаров

3.1. Основные уравнения

3.2. Моделирование турбулентности

3.3. Модели горения

3.4. Радиационный теплоперенос

3.4.1. Потоковые методы

3.4.2. Метод дискретного радиационного переноса

4. Замыкание основной системы уравнений.

Условия однозначности

4.1. Граничные условия на твердых негорючих поверхностях

4.2. Граничные условия на плоскости (оси) симметрии

4.3. Граничные условия, характеризующие работу приточно-вытяжной вентиляции

4.4. Граничные условия на свободной границе

4.5. Граничные условия на поверхности горючего

5. Порядок проведения расчета при оценке пожарной опасности конкретного объекта

Приложение. Пример расчета

Литература

1
2
3
текст целиком

 

Краткое содержание:

МИНИСТЕРСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ДЕЛАМ ГРАЖДАНСКОЙ ОБОРОНЫ, ЧРЕЗВЫЧАЙНЫМ СИТУАЦИЯМ И ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ СТИХИЙНЫХ БЕДСТВИЙ

ПРИМЕНЕНИЕ ПОЛЕВОГО МЕТОДА МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ ПОЖАРОВ В ПОМЕЩЕНИЯХ

Методические рекомендации

СПИСОК ОБОЗНАЧЕНИЙ

ВВЕДЕНИЕ

1. ОБЩИЕ ПОЛОЖЕНИЯ

2. ОБЛАСТЬ ПРИМЕНЕНИЯ

3. ОСНОВЫ ПОЛЕВОГО МЕТОДА МОДЕЛИРОВАНИЯ ПОЖАРОВ

3.1. Основные уравнения

3.2. Моделирование турбулентности

3.3. Модели горения

3.4. Радиационный теплоперенос

3.4.1. Потоковые методы

3.4.2. Метод дискретного радиационного переноса

4. ЗАМЫКАНИЕ ОСНОВНОЙ СИСТЕМЫ УРАВНЕНИЙ.

УСЛОВИЯ ОДНОЗНАЧНОСТИ

4.1. Граничные условия на твердых негорючих поверхностях

E = 9,0.

4.2. Граничные условия на плоскости (оси) симметрии

4.3. Граничные условия, характеризующие работу приточно-вытяжной вентиляции

4.4. Граничные условия на свободной границе

4.5. Граничные условия на поверхности горючего

5. ПОРЯДОК ПРОВЕДЕНИЯ РАСЧЕТНОЙ ОЦЕНКИ ПОЖАРНОЙ ОПАСНОСТИ КОНКРЕТНОГО ОБЪЕКТА

ПРИМЕР РАСЧЕТА

Характеристика объекта

Качественный анализ пожарной опасности объекта

Выбор критерия пожарной опасности

Выбор сценария пожара

Формулировка математической модели

Результаты моделирования

Определение количественного значения критерия пожарной опасности

Сравнение расчетных значений критерия пожарной опасности с критическими значениями

Таблица 1

Анализ правильности выбора сценария

Заключение о пожарной опасности объекта

ЛИТЕРАТУРА

СОДЕРЖАНИЕ

Рейтинг@Mail.ru