Математическое моделирование пожаров 
3.4. радиационный теплоперенос. 3.4.1. потоковые методы. 3.4.2. метод... Математическое моделирование пожаров 
3.4. радиационный теплоперенос. 3.4.1. потоковые методы. 3.4.2. метод...

Математическое моделирование пожаров => 3.4. радиационный теплоперенос. 3.4.1. потоковые методы. 3.4.2. метод дискретного радиационного переноса. 4. замыкание...

 
Пожарная безопасность - главная
Написать нам
ГОСТы, документы

 

Пожарная безопасность ->  Рекомендации ->  Математическое моделирование пожаров -> 
1
2
3
текст целиком
 

3.4. Радиационный теплоперенос

 

Наиболее простым способом учета радиационных тепловых потерь является так называемая cR -модель. Она состоит в том, что мощность тепловыделения в очаге горения путем занижения теплоты сгорания уменьшается на долю тепла cR, теряемую за счет излучения. Эта доля задается на основе экспериментальных данных в зависимости от вида топлива. Несмотря на кажущуюся примитивность, такая модель на начальной стадии пожара часто дает хорошие результаты.

Однако часто возникают задачи, требующие более точного моделирования радиационного теплопереноса.

Влияние радиационного теплопереноса выражается через источниковый член в уравнении сохранения энергии. Кроме того, радиационные потоки сильно влияют на температуры поверхностей стен помещения, а следовательно, на распространение пламени.

Основное уравнение радиационного переноса можно записать в виде

, (3.32)

где I - интенсивность радиационного излучения в направлении W; s - расстояние в направлении W; Eg = s - энергия, излучаемая абсолютно черным газом при температуре газа Tg; ka и ks - коэффициенты поглощения и рассеяния; Р(W, W') - вероятность того, что излучение в направлении W' после рассеяния попадет в телесный угол dW в окрестности направления W. Это уравнение необходимо интегрировать по всем направлениям и длинам волн. Для большинства практических задач точное решение невозможно, вместо него разработано несколько приближенных методов, которые и используются для моделирования динамики пожаров в помещениях.

 

3.4.1. Потоковые методы

 

Если разделить пространственное и угловое распределение интенсивности излучения, задачу можно существенно упростить. Этот подход используется в "потоковых методах" [15]. Если предположить, что спектральная интенсивность постоянна в пределах заданных интервалов телесного угла, то уравнение радиационного переноса сводится к нескольким связанным между собой обыкновенным линейным дифференциальным уравнениям относительно осредненных по пространству интенсивностей или потоков излучения.

Если телесные углы совпадают с поверхностями контрольного объема в декартовом пространстве и если предположить, что поток излучения через каждую поверхность однороден, то, обозначив через Fi+ тепловой поток, проходящий через контрольный объем в положительном направлении i, и через Fi- - поток в отрицательном направлении i, имеем:

; (3.33)

, (3.34)

где ka и ks - локальные коэффициенты поглощения и рассеяния, а Еb - количество тепла, излучаемого контрольным объемом, если он является абсолютно черным.

Объединяя эти уравнения и дифференцируя их по xi получаем:

, (3.35)

где . (3.36)

 

Уравнение имеет тот же вид, что и обобщенное уравнение сохранения (3.26), и может быть решено с помощью того же численного алгоритма. Вклад излучения в источниковый член уравнения энергии для каждого контрольного объема:

. (3.37)

Эта модель очень привлекательна для использования в полевых моделях, поскольку в ней используется тот же численный метод, что и для решения уравнений гидродинамики. Однако этот метод имеет ряд недостатков, среди которых одним из главных, применительно к пожарам, является неточность метода при моделировании радиационного переноса под углом к декартовой сетке.

Потоковые методы годятся, например, при определении радиационного переноса от припотолочного слоя к полу помещения, но они неточны вблизи очага, где скорость распространения фронта пламени может зависеть от переноса тепла, направленного под углом к сетке.

 

3.4.2. Метод дискретного радиационного переноса

 

Эта модель, разработанная Локвудом и Шахом [17], преодолевает основной недостаток потоковых методов. Для нее характерны некоторые черты методов Монте-Карло, а именно прохождение "лучей" электромагнитного излучения через вычислительную область между границами. Однако в отличие от методов Монте-Карло, где направления лучей генерируются случайным образом, в этой модели они выбираются предварительно, таким же образом, как выбирается расположение гидродинамической сетки. Метод включает в себя решение уравнения радиационного переноса вдоль путей этих лучей, выбираемых обычно таким образом, чтобы они приходили в центры граничных поверхностей гидродинамических контрольных объемов.

Число и направление лучей для каждой точки выбираются предварительно, чтобы обеспечить желаемый уровень точности, аналогично тому, как выбирается конечно-разностная сетка для проведения гидродинамических расчетов. Полусфера вокруг каждой точки разбивается на сегменты с равными площадями поверхностей на полусфере, в пределах которых интенсивность считается однородной.

Для каждого луча при его прохождении от одной границы до другой решается уравнение радиационного переноса (3.32). Если для краткости ввести: коэффициент ослабления ke = ka + ks, оптическую глубину элемента ds* = keds и модифицированную энергию излучения

,

то уравнение переноса можно переписать в виде

. (3.38)

Для элементарного контрольного объема, в котором температуру можно считать постоянной, уравнение можно проинтегрировать и привести к виду

(3.39)

Если считать величину Е* постоянной внутри контрольного объема, что вполне согласуется с обычной практикой применения конечно-разностного подхода к уравнениям динамики жидкости, получается простое рекуррентное соотношение:

, (3.40)

где In и In+1 - соответственно значения интенсивности излучения, входящего и выходящего из n-го контрольного объема;

ds* - оптическая длина контрольного объема.

Затем в каждом контрольном объеме, с учетом всех пересекающих его лучей, вычисляется величина чистого поглощения или выделения энергии излучения, которая, как упоминалось выше, может использоваться в уравнении сохранения энергии. Для n-го контрольного объема

, (3.41)

где N - общее количество лучей, dА - площадь поверхности ячейки.

 

4. ЗАМЫКАНИЕ ОСНОВНОЙ СИСТЕМЫ УРАВНЕНИЙ.

УСЛОВИЯ ОДНОЗНАЧНОСТИ

 

Для того чтобы сформулировать конкретную расчетную задачу и получить замкнутую систему уравнений для ее решения, основные уравнения, описанные в главе 3, необходимо дополнить условиями однозначности, а именно начальными и граничными условиями.

Начальные условия определяют обстановку в рассматриваемом помещении до начала пожара (либо до момента начала моделирования пожара) и включают в себя описание геометрии помещения и задание параметров, характеризующих состояние рассматриваемой системы в этот момент. Начальные условия в помещении, как правило, хорошо известны, и их задание не представляет серьезных трудностей.

Более подробного рассмотрения заслуживает постановка граничных условий. Их можно разделить на следующие категории:

условия на твердых негорючих поверхностях;

условия на плоскости (оси) симметрии;

условия, характеризующие работу приточно-вытяжной вентиляции;

условия на свободной границе;

условия на поверхности горючего.

 

4.1. Граничные условия на твердых негорючих поверхностях

 

Твердые негорючие поверхности (ограждающие конструкции), как правило, характеризуются отсутствием газопроницаемости, и для уравнений сохранения импульса на них традиционно используются условия прилипания (равенства нулю всех компонент скорости).

Более разнообразны способы постановки граничных условий для уравнения энергии. Здесь можно выделить два крайних типа граничных условий (адиабатные и изотермические) и условия, которые тем или иным способом учитывают прогрев ограждающих конструкций за счет взаимодействия с газовой средой внутри помещения.

Использование адиабатных граничных условий (тепловой поток в ограждающие конструкции равен нулю) оправданно только в случае, если ограждающие конструкции имеют малую термическую инерционность, и для моделирования радиационного переноса используется упрощенная cR -модель. При использовании более точных потоковых методов или метода дискретного радиационного переноса возможны серьезные ошибки, так как при этом часть лучистого тепла, которая должна поглощаться ограждающими конструкциями, аккумулируется в пристенном слое газовой среды.

Использование изотермических граничных условий является более обоснованным при большой термической инерционности конструкций. Их вполне можно рекомендовать к применению, если целью расчета не является определение температурного режима ограждающих конструкций и моделирование ограничивается начальной стадией пожара. Например, если рассчитывается время блокирования путей эвакуации или время срабатывания пожарных извещателей.

Широкое распространение для расчета теплообмена с конструкциями получили граничные условия третьего рода, с использованием различных эмпирических корреляций для расчета коэффициента теплоотдачи [18, 19], но наиболее универсальным способом является использование пристеночных функций [11, 20, 21]. В настоящее время вопрос о выборе оптимального вида пристеночных функций для расчета теплообмена дымовых газов со стенкой требует проведения дополнительных исследований. В качестве примера приведем постановку граничных условий с помощью пристеночных функций, использованную в работе [11].

Рассчитывается безразмерное расстояние у+ до ближайшего пристеночного узла:

.

где kp - значение кинетической энергии турбулентности, рассчитанное при решении соответствующего уравнения переноса с использованием граничного условия на стенке k = 0; ур - размерное расстояние от ближайшего пристеночного узла до стенки, м.

Рассчитывается значение безразмерной скорости и+ :

y+ при y+ £ 11,63

u+ =

при y+ > 11,63

где k = 0,4 - постоянная Кармана;

E = 9,0.

Вычисляется напряжение трения на стенке:

.

Определяется значение безразмерной энтальпии h+:

h+ = Prt(u++П),

где Prt - турбулентное число Прандтля; П - сопротивление ламинарного подслоя переносу энергии:

.

Рассчитывается значение конвективного теплового потока между стенкой и газовой средой:

,

где hw - энтальпия ближайшего узла внутри стенки; hp - энтальпия ближайшего пристеночного узла.

Значение скорости диссипации турбулентной кинетической энергии определяется из соотношения

.

 

4.2. Граничные условия на плоскости (оси) симметрии

 

На плоскости (оси) симметрии традиционно используется условие vn = 0 для нормальной компоненты скорости и условие dФ/dn = 0 - для остальных переменных.

 

4.3. Граничные условия, характеризующие работу приточно-вытяжной вентиляции

 

Для описания вентиляционного потока, подаваемого (удаляемого) через границу расчетной области, как правило, задается значение скорости потока. При этом в случае входящего потока задаются также значения для остальных консервативных величин, в случае выходящего потока для них используется условие dФ/dn = 0.

 

4.4. Граничные условия на свободной границе

 

При моделировании пожаров часто встречаются участки границы, через которые возможно течение газовой среды как внутрь расчетной области, так и из нее (дверные и оконные проемы, люки дымоудаления и т.п.). Используемые на таких границах граничные условия можно разделить на два типа: условия с заданной нормальной скоростью и условия с заданным давлением. В условиях первого типа значение скорости задается не явно, а, в виде условий типа dvn/dn = 0 или d2vn/dn2 = 0. Значение давления на границе при этом определяется из решаемых уравнений. В условиях второго типа давление может задаваться как в явном виде, так и в форме dp/dn = 0. При этом величина нормальной скорости вычисляется с использованием значения давления. Для касательных компонент скорости и в том и в другом случае обычно используются условия dv/dn = 0.

Имеющаяся в настоящее время информация не позволяет сделать вывод о том, что какой-то тип граничных условий является более предпочтительным. Общие рекомендации сводятся к тому, чтобы отнести свободную границу как можно дальше от рассматриваемого помещения (системы помещений) за счет введения внешней области с целью уменьшить влияние граничного условия на результаты расчетов. Так, в одной из работ [22] использованная с этой целью внешняя область достигала 5 размеров рассматриваемого помещения. Вместе с тем проведенные во ВНИИПО исследования показали, что если вычислительные ресурсы не позволяют избавиться от влияния граничного условия описанным выше способом, целесообразно установить свободную границу непосредственно на проеме, с тем чтобы снизить влияние свободной границы за счет сокращения ее площади.

 

4.5. Граничные условия на поверхности горючего

 

Наиболее распространены два способа моделирования очага пожара. Первый состоит в задании источника паров горючего непосредственно внутри расчетной области. Второй -в задании потока паров горючего через граничную поверхность. Существует ряд сценариев, когда первый способ имеет определенные преимущества. Например, при моделировании горения штабеля древесины он позволяет учитывать вовлечение воздуха внутрь штабеля. Однако на практике наиболее часто используют второй способ.

При этом скорость и температура потока паров горючего определяются либо из эмпирических соображении, либо с помощью используемой в расчете модели газовыделения. Особое внимание необходимо уделить заданию граничных условий для турбулентных параметров k и e. Как показывают экспериментальные исследования [23], в тонком слое вблизи границы горючего, происходит резкое снижение величины турбулентной кинетической энергии от значений, характерных для процессов, протекающих в области пламени, до значений, характерных для потока паров горючего.

Стандартная k-e модель турбулентности не позволяет смоделировать этот эффект, поэтому использование в качестве граничных условий значений k и e, соответствующих параметрам потока горючего, приводит к занижению значений турбулентной вязкости в области пламени и, как следствие, к завышению значений скоростей и температур в области пламени и восходящей свободно-конвективной струи [24]. Строгого решения задачи о постановке этих граничных условий на данный момент не существует. Для практических расчетов в качестве граничных условий используют искусственные значения k и e [25-27], обеспечивающие разумную величину турбулентной вязкости в области пламени без рассмотрения процессов, протекающих в тонком слое вблизи поверхности горючего. Так, проведенные исследования [24] показали, что хорошие результаты при использовании k-e модели в сочетании с диффузионно-вихревой моделью горения [13] дает использование значений k = 0,3 м22 и e = 1×10-6 м2/c3.

 

5. ПОРЯДОК ПРОВЕДЕНИЯ РАСЧЕТНОЙ ОЦЕНКИ ПОЖАРНОЙ ОПАСНОСТИ КОНКРЕТНОГО ОБЪЕКТА

 

Порядок проведения расчетной оценки пожарной опасности конкретного объекта в виде блок-схемы представлен на рис. 1.

Сбор исходных данных включает в себя изучение:

объемно-планировочных решений объекта;

теплофизических характеристик ограждающих конструкций и размещенного на объекте оборудования;

вида, количества и расположения горючих материалов;

количества и вероятного расположения людей в здании;

материальной и социальной значимости объекта;

систем обнаружения и тушения пожара, противодымной защиты и огнезащиты, системы обеспечения безопасности людей.

Исходя из собранных данных производится качественный анализ пожарной опасности объекта. При этом учитываются:

вероятность возникновения пожара;

возможная динамика развития пожара;

наличие и характеристики систем противопожарной защиты (СППЗ);

вероятность и возможные последствия воздействия пожара на людей, конструкцию здания и материальные ценности;

соответствие объекта и его СППЗ требованиям противопожарных норм.

На основе проведенного анализа ставится задача исследования и формулируется соответствующий ей количественный критерий оценки пожарной опасности объекта. Например, если целью расчетов является оценка воздействия пожара на конструкции или уровень безопасности людей в случае пожара, то соответствующими критериями будут фактическая огнестойкость, определяемая динамикой прогрева конструкций и время блокирования путей эвакуации, определяемое распределением значений показателей ОФП в объеме помещения.

Этап количественного анализа пожарной опасности начинается с экспертного определения сценария или сценариев пожара, при которых ожидается достижение критерием "наихудшего" значения.

 

 

Рис. 1. Порядок проведения расчетной оценки пожарной опасности объекта

 

Затем формулируется математическая модель, соответствующая данному сценарию, и производится моделирование динамики развития пожара. На основании полученных результатов рассчитывается значение установленного критерия, которое сравнивается с предельно допустимым значением. В случае, если значение критерия не является допустимым, производится корректировка СППЗ, объемно-планировочных решений, размещения людей и т.д. в целях повышения уровня пожарной безопасности и осуществляется повторный расчет для скорректированного сценария. В случае, если значение критерия является допустимым, на основе полученной количественной картины пожара экспертно оценивается, является ли принятый сценарий пожара "наихудшим", и при необходимости производится корректировка сценария (в плане возникновения и развития пожара) и поверочный просчет параметров пожара. Конечным результатом оценки являются заключение о степени пожарной опасности объекта и рекомендации по мероприятиям его противопожарной защиты.

 

 

Приложение

 

ПРИМЕР РАСЧЕТА

 

Характеристика объекта

 

Рассматриваемое пятиэтажное здание II степени огнестойкости является многофункциональным комплексом и включает в себя спальную зону с номерами, административно-бытовую часть и учебные помещения. Пожарная нагрузка представлена офисной и бытовой мебелью, оргтехникой, горючими материалами отделки помещений. В здании одновременно могут находиться 255 человек, которые распределены по этажам следующим образом: на 1-м этаже 34 человека; на 2-м - 48; на 3-м - 96; на 4-м - 59; на 5-м - 18 человек.

Система противопожарной защиты представлена:

тепловыми пожарными извещателями;

незадымляемыми лестничными клетками;

системой оповещения о пожаре 2-го типа;

внутренним пожарным водопроводом и первичными средствами пожаротушения.

 

Качественный анализ пожарной опасности объекта

 

С точки зрения пожарной опасности особенностями рассматриваемого объекта являются:

наличие ряда помещений со значительным количеством горючих материалов и изделий с высокой пожарной опасностью и потенциальными источниками пожара;

возможность распространения продуктов горения по вертикали через атриум;

наличие эвакуационных путей через галереи и помещения, открытые в объем атриума;

отсутствие противопожарной стены 1-го типа, отделяющей спальные помещения от помещений другого функционального назначения;

возможность массового присутствия людей в одном помещении.

Количество и расположение пожарной нагрузки не представляют опасности для устойчивости основных несущих конструкций в первые полчаса пожара, и основной проблемой будет являться блокирование путей эвакуации продуктами горения. Наиболее опасным представляется возникновение очага пожара в помещении, расположенном на первом этаже, с возможностью распространения дыма на верхние этажи через объем атриума.

 

Выбор критерия пожарной опасности

 

Целью расчета является оценка возможности безопасной эвакуации людей, следовательно, критерием оценки пожарной опасности объекта будет являться время блокирования эвакуационных путей. Считаем, что блокирование эвакуационного пути происходит при заполнении его дымом на высоте 1,7 м от пола. Поскольку другие источники тепловыделения, кроме очага пожара, отсутствуют, и температура окружающей среды равна температуре внутри помещения, в качестве границы распространения дыма принимаем изолинию температуры на 1 К выше начальной. Таким образом, для определения значения критерия необходимо рассчитать температурный режим в помещении.

 

Выбор сценария пожара

 

Расчетная схема системы помещений (рис. 2) представляла собой пятиэтажный атриум с открытыми внутренними галереями, сообщающийся с помещением бильярдной на первом этаже и холлом на втором этаже. Комнаты, выходящие на галереи атриума, считаются закрытыми. Эвакуационный выход с первого этажа на улицу открыт.

Наиболее опасным представляется возникновение очага пожара на первом этаже, из-за возможности распространения дыма по всем этажам через свободный объем атриума. С точки зрения расположения горючей нагрузки наиболее опасным местом на первом этаже является бильярдная, поэтому был принят следующий сценарий развития очага пожара.

Очаг пожара возникает в бильярдной на первом этаже. Пламя распространяется по мебели (бильярдный стол, кресло, открытый шкаф). Максимальная площадь горящей поверхности 5,2 м2, максимальная мощность пожара 2 МВт. Динамика развития очага пожара определяется характерной скоростью распространения фронта пламени по горизонтали 3 см/с и по вертикальным поверхностям - 0,1 см/с и охватывает всю поверхность горючих материалов за 120 с.

 

 

Рис. 2. Схема системы помещений

 

Формулировка математической модели

 

Использованная математическая модель включала в себя следующие уравнения: уравнение неразрывности, три уравнения сохранения импульса вдоль каждой из координат, уравнение сохранения энергии, уравнение переноса для массы паров топлива и функции смешения, а также уравнение k-e модели турбулентности с поправкой на влияние естественной конвекции. Процесс горения моделировался с помощью диффузионно-вихревой модели Магнуссена-Хъертагера.

Поскольку задачей расчета является оценка безопасности эвакуации людей и моделирование ограничивается начальной стадией пожара, для учета радиационного теплопереноса использовалась упрощенная cR - модель. Доля потерь на излучение при этом была принята равной 0,3, что соответствует литературным данным для древесины. В соответствии с рекомендациями п. 4.1 на стенках помещения для уравнения энергии были использованы изотермические граничные условия.

Данная математическая модель была реализована с помощью программного комплекса SOFIE [28].

 

Результаты моделирования

 

Первоначально развитие пожара происходит в пределах помещения очага пожара (бильярдной). К моменту времени 30 с происходит заполнение дымом верхней части помещения очага и начинается выход продуктов горения через открытый дверной проем (двустворчатая дверь 2´1,7 м), а через нижнюю часть проема в помещение поступает воздух, поддерживающий горение. Далее происходит выход продуктов горения в объем атриума (рис. 3) и их растекание под галереей 2-го этажа.

 

 

Рис. 3. Поля температур (К) в вертикальном сечении атриума в момент времени 90 с

 

Образуется плоская конвективная колонка, поднимающаяся к потолку атриума. К моменту времени 90 с струя продуктов горения поднимается до уровня 4-го этажа. Задымление галерей 2-го и 3-го этажей при этом не происходит. В то же самое время продолжается растекание продуктов горения под галереей 2-го этажа. К моменту времени 120 с конвективная колонка достигает потолка атриума и начинается радиальное растекание продуктов горения (рис. 4, а). При этом происходит задымление ближайшей к колонке части галереи 5-го этажа и блокирование одного из эвакуационных выходов (рис. 4, в).

 

 

Рис. 4. Поля температур (К) в вертикальном сечении атриума (а), горизонтальном сечении под потолком 1-го этажа (б) и сечении на уровне 1,7 м от пола 5-го этажа в момент времени 120 с

 

К моменту времени 180 с продукты горения в объеме атриума опускаются до уровня 2-го этажа (рис. 5). При этом происходит полное задымление галереи 5-го этажа и блокирование обоих эвакуационных выходов на 4-м этаже. На третьем этаже (рис. 6, а) большая часть галереи остается свободной от дыма и блокируется только один эвакуационный выход. Задымление на 2-м этаже (рис. 6, б) на уровне 1,7 м незначительно, и все эвакуационные выходы свободны. Эвакуационные выходы на первом этаже остаются свободными. К моменту времени 240 с происходит опускание дымовых газов до пола первого этажа и полное блокирование эвакуационных выходов на всех этажах (рис. 7).

 

Рис. 5. Поля температур (К) в вертикальном сечении атриума в момент времени 180 с

 

 

Рис. 6. Поля температур в горизонтальных сечениях атриума на высоте 1,7 м от уровня пола третьего (а) и второго (б) этажей в момент времени 180 с

 

 

Рис. 7. Поля температур (К) в вертикальном сечении атриума в момент времени 240 с

 

 

 

1
2
3
текст целиком

 

Краткое содержание:

МИНИСТЕРСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ДЕЛАМ ГРАЖДАНСКОЙ ОБОРОНЫ, ЧРЕЗВЫЧАЙНЫМ СИТУАЦИЯМ И ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ СТИХИЙНЫХ БЕДСТВИЙ

ПРИМЕНЕНИЕ ПОЛЕВОГО МЕТОДА МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ ПОЖАРОВ В ПОМЕЩЕНИЯХ

Методические рекомендации

СПИСОК ОБОЗНАЧЕНИЙ

ВВЕДЕНИЕ

1. ОБЩИЕ ПОЛОЖЕНИЯ

2. ОБЛАСТЬ ПРИМЕНЕНИЯ

3. ОСНОВЫ ПОЛЕВОГО МЕТОДА МОДЕЛИРОВАНИЯ ПОЖАРОВ

3.1. Основные уравнения

3.2. Моделирование турбулентности

3.3. Модели горения

3.4. Радиационный теплоперенос

3.4.1. Потоковые методы

3.4.2. Метод дискретного радиационного переноса

4. ЗАМЫКАНИЕ ОСНОВНОЙ СИСТЕМЫ УРАВНЕНИЙ.

УСЛОВИЯ ОДНОЗНАЧНОСТИ

4.1. Граничные условия на твердых негорючих поверхностях

E = 9,0.

4.2. Граничные условия на плоскости (оси) симметрии

4.3. Граничные условия, характеризующие работу приточно-вытяжной вентиляции

4.4. Граничные условия на свободной границе

4.5. Граничные условия на поверхности горючего

5. ПОРЯДОК ПРОВЕДЕНИЯ РАСЧЕТНОЙ ОЦЕНКИ ПОЖАРНОЙ ОПАСНОСТИ КОНКРЕТНОГО ОБЪЕКТА

ПРИМЕР РАСЧЕТА

Характеристика объекта

Качественный анализ пожарной опасности объекта

Выбор критерия пожарной опасности

Выбор сценария пожара

Формулировка математической модели

Результаты моделирования

Определение количественного значения критерия пожарной опасности

Сравнение расчетных значений критерия пожарной опасности с критическими значениями

Таблица 1

Анализ правильности выбора сценария

Заключение о пожарной опасности объекта

ЛИТЕРАТУРА

СОДЕРЖАНИЕ

Рейтинг@Mail.ru