СТО Газпром РД 1.2-138-2005 
Приложение а. Примеры расчета систем местных отсосов. Пример 1. Выводы. Пример... СТО Газпром РД 1.2-138-2005 
Приложение а. Примеры расчета систем местных отсосов. Пример 1. Выводы. Пример...

СТО Газпром РД 1.2-138-2005 => Приложение а. Примеры расчета систем местных отсосов. Пример 1. Выводы. Пример 2. Выводы. Пример 3. Выводы. Пример 4....

 
Пожарная безопасность - главная
Написать нам
ГОСТы, документы

 

Пожарная безопасность ->  Прочие ->  СТО Газпром РД 1.2-138-2005 -> 
1
2
3
4
5
6
7
8
текст целиком
 

ПРИЛОЖЕНИЕ А

(рекомендуемое)

 

ПРИМЕРЫ РАСЧЕТА СИСТЕМ МЕСТНЫХ ОТСОСОВ

 

Целью расчетов систем местных отсосов является определение требуемого минимального расхода воздуха для удаления пожаровзрывоопасных веществ, необходимости оборудования систем местных отсосов резервными вентиляторами, возможности объединения местных отсосов в общие системы, выбор исполнения электрического оборудования в зависимости от свойств перемещаемых пожаровзрывоопасных веществ и условий его размещения, а также назначение других мероприятий (огнезадерживающие и обратные клапаны, определение требуемой группы горючести, предела огнестойкости воздуховодов и т.п.) для обеспечения пожарной безопасности систем местных отсосов в соответствии с требованиями СНиП 41-01-2003.

 

Пример 1

 

1. Исходные данные

1.1 В аппарате объемом 10 м3 содержится ацетилен при рабочем давлении 101 кПа и температуре 30 °С. Для удаления ацетилена, выходящего через неплотности аппарата в помещение при допустимых условиях герметизации, предусмотрен вытяжной зонт. Объем помещения, в котором установлен аппарат, Vп = 80 м3. При возникновении неисправностей в аппарате, сопровождающихся утечкой ацетилена, предусмотрена аварийная вентиляция.

1.2 Молярная масса ацетилена М = 26 кг/кмоль. Ацетилен - горючий газ с температурой самовоспламенения 335 °С, нижним концентрационным пределом распространения пламени 2,5 % (об) (см. табл. Г1 прилож. Г). Теплота сгорания 49,97×106 Дж/кг, коэффициент участия во взрыве 0,5.

2 Обоснование расчетного варианта

В качестве расчетного варианта принимается аппарат в исправном состоянии с утечкой ацетилена через прокладки, швы, разъемные соединения и другие элементы конструкции. За расчетную температуру принимается абсолютная летняя температура воздуха в данном районе (Москва) согласно СНиП 23-01-99* tp = 28,5 °С. Коэффициент износа аппарата К = 1,5.

3 Определение скорости утечки ацетилена

Скорость утечки ацетилена из аппарата определим по формуле (3):

кг/с,

где K = 1,5 - коэффициент, учитывающий степень износа производственного оборудования;

С = 4,61×10-5 - коэффициент при давлении газа в аппарате 101 кПа (принимается по табл. 1 п. 6.3. Методики);

V = 10 м3 - объем аппарата;

М = 26 кг/кмоль, молярная масса ацетилена;

Тр =303 К, температура газа в аппарате.

4 Нижний концентрационный предел распространения пламени ацетилена в % (об.) при расчетной температуре 28,5 °С определим по формуле (11):

% (об.).

5 Нижний концентрационный предел распространения пламени ацетилена в кг/м3 в соответствии с формулой (10) составит

кг/м3.

6 Согласно формуле (1) минимальный расход воздуха в местном отсосе должен быть

= 1,54×10-2 м3/с, или 55,44 м3/ч.

7 Давление взрыва, создаваемое при горении ацетилена в помещении, определим по формуле (12)

кПа,

где My = 3600×mу = 3600×2×10-4 = 0,72 масса ацетилена (кг), поступившего в помещение в течение одного часа;

Нт = 49,97×106 - теплота сгорания ацетилена, Дж/кг;

Z = 0,5 - коэффициент участия ацетилена во взрыве;

Vсв = Vп×0,8 = 64 - свободный объем помещения, м3.

Поскольку полученное давление больше 5 кПа, то, согласно НПБ 105-03, помещение является взрывоопасным и относится к категории А.

8 Рассчитаем концентрацию ацетилена в помещении при остановке вентилятора системы местных отсосов по уравнению (14)

= 1,1×10-2 кг/м3.

9 Определяем отношений y (15):

.

Поскольку y больше 0,1, то в соответствии с требованиями СНиП 41-01-2003 система местного отсоса при отсутствии автоматически включаемой аварийной вентиляции должна оборудоваться резервным вентилятором.

10 Плотность ацетилена по воздуху при расчетной температуре найдем по выражению (17):

.

Поскольку v меньше 1, и ацетилен легче воздуха, то воздуховоды должны иметь подъем не менее 0,005 в направлении движения газовоздушной среды.

Выводы

1 Для обеспечения пожаровзрывобезопасности помещения расход воздуха, создаваемый системой местного отсоса, должен быть не менее 55,44 м3/ч (фактическая производительность системы местного отсоса должна отвечать также требованиям санитарных норм к воздуху рабочей зоны).

2 Систему местного отсоса следует проектировать отдельно от системы общеобменной вентиляции, (п. 5.1 Методики) с резервным вентилятором (п. 5.3 Методики).

3 В системе местного отсоса должно быть предусмотрено автоматическое блокирование вентилятора с аппаратом, обеспечивающее остановку аппарата при выходе из строя вентилятора, а при невозможности остановки аппарата - включение аварийной вентиляции (п. 5.3 Методики).

4. Электрооборудование системы местного отсоса должно быть выполнено во взрывозащищенном исполнении, так как газо-воздушная смесь удаляется из помещения категории А (п. 5.4 Методики).

5 Оборудование системы местного отсоса может быть размещено в помещении, в котором находится аппарат с ацетиленом, или в общем помещении для вентиляционного оборудования вытяжных систем общеобменной вентиляции для помещений категорий А и Б (п. 5.5 Методики).

6 Воздуховод системы местного отсоса должен быть выполнен из негорючих материалов и оборудован огнезадерживающим клапаном в местах его пересечения противопожарной преграды или перекрытия помещений категорий А, Б или В1-В3 и иметь подъем не менее 0,005 в сторону движения воздуха. Предел огнестойкости воздуховода системы местного отсоса должен быть не менее 0,5 ч (пп. 5.7-5.9, 5.11 Методики).

 

Пример 2

 

1 Исходные данные

1.1 В аккумуляторном помещении объемом Vп = 180 м3 размещаются две аккумуляторные батареи СК-4 (без системы рекомбинации водорода) из 12 аккумуляторов с максимальным зарядным током 36 А и СК-1 из 13 аккумуляторов с зарядным током 9 А. Аккумуляторные батареи устанавливаются под вытяжным зонтом. Максимальная условная температура воздуха в помещении принимается 28 °С (г. Екатеринбург). Других взрывопожароопасных веществ, кроме водорода, выделяющегося в процессе зарядки аккумуляторов, нет.

1.2 Обоснование расчетного варианта.

Расчет системы местного отсоса производим для процесса одновременной зарядки двух батарей максимальным зарядным током. Процесс зарядки сопровождается выделением водорода в помещение. Молярная масса водорода М = 2 кг/кмоль. Водород - горючий газ с температурой самовоспламенения 510 °С, нижним концентрационным пределом распространения пламени jо = 4,12% (об.) (см. табл. Г1 прилож. Г). Удельная теплота сгорания 119,8×106 Дж/кг, коэффициент участия во взрыве 1,0.

2 Массу водорода, образующегося в единицу времени при зарядке двух батарей, рассчитываем по формуле (6):

кг/с,

где Тр - расчетная условная температура, 301 К;

Ii - максимальный зарядный ток i-й батареи, 36 А и 9А;

Ni - количество аккумуляторных элементов i-й батареи 12 и 13;

k - число аккумуляторов, два.

3 Нижний концентрационный предел распространения пламени водорода в % (об.) при расчетной условной температуре 28 °С найдем по формуле (11):

% (об.).

4 Нижний концентрационный предел распространения пламени водорода в соответствии с формулой (10) составит

кг/м3.

5 Согласно формуле (1) минимальный расход воздуха в системе местных отсосов должен быть

= 7,3×10-3 м3/с, или 26,28 м3/ч.

6 Определим давление взрыва, создаваемое при горении смеси водорода с воздухом в помещении по уравнению (12):

кПа,

где МН = 3600×mН = 3600×1,2×10-5 = 0,043 кг - масса водорода, поступившего в течение одного часа;

НТ = 119,8×106 - удельная теплота сгорания водорода, Дж/кг;

Z = 1,0 - коэффициент участия водорода во взрыве;

Vсв = Vп×0,8 = 144 - свободный объем помещения, м3.

Поскольку полученное давление меньше 5 кПа, то в соответствии с НПБ 105-03 помещение не относится к категории А.

7 Рассчитаем концентрацию водорода в помещении при остановке вентилятора местных отсосов по уравнению (14):

кг/м3.

8 Определяем отношение y (15):

Поскольку y меньше 0,1, то в соответствии с требованиями СНиП 41-01-2003 в системе местного отсоса установки резервного вентилятора не требуется.

9 Плотность водорода по воздуху при расчетной температуре найдем по формуле (17):

.

Поскольку v меньше 1, водород легче воздуха, то воздуховоды должны иметь подъем не менее 0,005 в направлении движения газовоздушной среды.

Выводы

1 Для обеспечения пожарной безопасности аккумуляторного помещения производительность системы местных отсосов должна быть не менее 26,28 м3/ч без резервного вентилятора.

2 Систему местного отсоса следует проектировать отдельно от системы общеобменной вентиляции (п. 5.1 Методики).

3 В системе необходимо предусмотреть автоматическое блокирование вентилятора, обеспечивающее остановку процесса зарядки при выходе из строя вентилятора (п. 5.3 Методики).

4 Электрооборудование системы местных отсосов должно быть выполнено в обычном исполнении, так как удаление газовой смеси осуществляется не из помещения категории А (п. 5.5 Методики).

5 Оборудование систем местных отсосов может быть размешено в помещении, в котором размещены аккумуляторы, или в общей помещении для вентиляционного оборудования вытяжных систем общеобменной вентиляции (п. 5.5 Методики).

6 Воздуховоды системы местных отсосов должны быть выполнены из негорючих материалов и оборудованы огнезадерживающими клапанами в местах их пересечения противопожарной преграды или перекрытия помещений категорий А, Б или В1-В3 и иметь подъем 0,005 в сторону движения газовоздушной смеси. Предел огнестойкости транзитных воздуховодов систем местных отсосов должен быть не менее 0,5 ч (пп. 5,7-5.9, 5.11 Методики).

 

Пример 3

 

1 Исходные данные

1.1 В лабораторном помещении объемом Vп = 425 м3 на рабочем столе, оборудованном вытяжным зонтом, производится разлив сжиженного этилена из сосуда Дьюара в емкости для проведения лабораторных исследований. В сосуде Дьюара находится 1 л этилена. Рабочий стол имеет площадь поверхности 1,4 м2 и оборудован бортиками высотой 5 см, препятствующими растеканию сжиженного газа за пределы площади стола.

1.2 Молярная масса сжиженного этилена М = 28 кг/кмоль. Плотность сжиженного этилена при температуре эксплуатации Тж= 169,5 К составляет rж = 568 кг/м3. Плотность газообразного этилена при этой температуре rг = 2,02 кг/м3. Мольная теплота испарения сжиженного этилена при Тж - Lисп = 1,344×104 Дж/моль. Температура поверхности стола Тс = 299 К. Коэффициент теплопроводности материала стола (клееной фанеры) lТВ = 0,15 Вт/(м×К), коэффициент температуропроводности этого материала a = 9,96×10-8 м2/с. Максимальная скорость воздушного потока в помещении u = 0,1 м/с. Кинематическая вязкость воздуха при расчетной условной температуре в помещении 26 °С составляет v = 1,64×10-5 м2/с, коэффициент теплопроводности воздуха lв = 2,74×10-2 Вт/(м×К). Нижний концентрационный предел распространения пламени этилена равен 2,7% об. (см. табл. Г1 прилож. Г), удельная теплота сгорания 46988 кДж/кг, коэффициент участии во взрыве 0,5.

2 Обоснование расчетного варианта

В качестве расчетного варианта принимается пролив всего этилена, содержащегося в сосуде Дьюара. Ввиду того, что площадь, ограниченная бортиками стола, больше площади разлива этилена, за площадь испарения принимаем 1 м2 (согласно п. 4.6 Методики).

3 Определение скорости испарения этилена

3.1 Интенсивность испарения при проливе этилена (кг/м2с) определим по п. 6.7:

где М - молярная масса этилена, кг/кмоль;

Lисп - вольная теплота испарения при начальной температуре Тж, Дж/моль;

Т0 - начальная температура материала стола, соответствующая расчетной температуре tp = 26 °C, 299K;

Тж - начальная температура этилена, 169,5 К;

lТВ - коэффициент теплопроводности материала поверхности стола, 0,15 Вт/(м×К);

a - эффективный коэффициент температуропроводности материала стола, м2/с;

- число Рейнольдса (u - скорость воздушного потока, м/с; d - характерный размер (подкоренное значение площади испарения), м; v - кинематическая вязкость воздуха при расчетной температуре tp, м2/с);

lTB - коэффициент теплопроводности воздуха при расчетной температуре tp, Вт/(м×К).

3.2 Скорость испарения пролива этилена

m = mСУГFж = 0,017×1 = 0,017 кг/с.

4 Нижний концентрационный предел распространения пламени этилена в % (об.) при расчетной температуре 26 °С найдем по формуле (11):

% (об.).

5 Нижний концентрационный предел распространения пламени этилена в кг/м2 в соответствии с формулой (10) составит

кг/м3.

6 Минимальный расход воздуха в системе местных отсосов согласно формуле (1) должен быть

= 1,11 м3/с, или 3996 м3/ч.

7 Определим давление взрыва, создаваемое при горении смеси этилена с воздухом в помещении по формуле (12):

кПа,

М = m×3600 = 0,017×3600 = 61,2 кг - масса этилена, рассчитанная на предполагаемое испарение в течение часа, что превышает фактическую массу этилена, равную МЭ = rж×v = 568×1×10-3 = 0,568 кг, которая учитывается в формуле.

v - объем газа в сосуде Дьюара, м3.

НТ = 46,988×105 - удельная теплота сгорания этилена, Дж/кг;

Z = 0,5 - коэффициент участия этилена во взрыве:

Vсв = Vп×0,8 = 340 м3 - свободный объем помещения.

Поскольку полученное давление меньше 5 кПа, то, в соответствии с НПБ 105-03 помещение не относится к категории А или Б.

8 Рассчитаем концентрацию паров этилена в помещении при остановке вентилятора местных отсосов по уравнению (14):

кг/м3.

9. Определим отношение y (15):

.

Поскольку y меньше 1, то, в соответствии с требованиями СНиП 41-01-2003, в системе местного отсоса установки резервного вентилятора не требуется.

10 Плотность паров этилена по воздуху при расчетной температуре определяем по формуле (17):

.

Поскольку v меньше 1, пары этилена легче воздуха и воздуховоды должны иметь польем не менее 0,005 в направлении движения газовоздушной среды.

Выводы

1 Для обеспечения пожарной безопасности лабораторного помещения производительность системы местного отсоса должна быть не менее 3996 м3/ч (без резервного вентилятора). При этом количество сжиженного этилена в сосуде Дьюара должно быть не более 1 л, а покрытие рабочего стола - выполнено из клееной фанеры.

2 Систему местного отсоса следует проектировать отдельно от системы общеобменной вентиляции (п. 5.1 Методики).

3 В системе необходимо предусмотреть автоматическое включение аварийной вентиляции при остановке рабочего вентилятора системы местных отсосов (п. 5.3 Методики) для создания нормируемых санитарных условий.

4 Электрооборудование системы местных отсосов может быть выполнено в обычном исполнении (п. 5.4 Методики).

5 Оборудование системы местного отсоса может быть размешено в помещении лаборатории или в общем помещении для вентиляционного оборудования вытяжных систем общеобменной вентиляции (п. 5.5 Методики).

6 Воздуховод системы местного отсоса должен быть выполнен из негорючих материалов и оборудован огнезадерживающим клапаном в месте его пересечения противопожарной преграды или перекрытия помещений категории А, Б или В1-В3 и иметь подъем 0,005 в сторону движения воздуха. Предел огнестойкости транзитных воздуховода системы местного отсоса должен быть не менее 0,5 ч (пп. 5.7-5.9, 5.11 Методики).

 

Пример 4

 

1 Исходные данные

1.1 В кладовой оперативного хранения горючих веществ площадью Sп = 35 м2 и объемом Vп = 100 м3 в вытяжном шкафу размешен сменный запас ацетона массой 4 кг в алюминиевой канистре. Вытяжной шкаф оборудован бортиками, препятствующими растеканию ЛВЖ за пределы площади, равной 0,5 м2. Площадь открытого проема шкафа S = 1,75 м2. Аварийная вентиляция для помещения кладовой не предусмотрена.

1.2 Молярная масса ацетона М = 58,08 кг/кмоль. Константы уравнения Антуана: А = 6,37551; В = 1281,721; С = 237,088 (для давления насыщенных паров, выраженного в кПа). Ацетон - легковоспламеняющаяся жидкость с температурой вспышки -18 °С, плотностью 790,8 кг/м3 и нижним концентрационным пределом распространения пламени, равным 2,7 % (об.) (см. табл. Г1 прилож. Г). Удельная теплота сгорания 31360 кДж/кг, коэффициент участия во взрыве 0,3.

2 Обоснование расчетного варианта

В качестве расчетного варианта принимается пролив всего сменного запаса ацетона в пределах площади, ограниченной бортиками, равной Fж = 0,5м2. За расчетную условную температуру принимается абсолютная летняя температура воздуха в данном районе (Мурманск) согласно СНиП 25-01-99* tp = 22 °С.

3 Определение скорости испарения ацетона

3.1 По уравнению (8) рассчитаем давление насыщенных парой ацетона при заданной расчетной температуре:

кПа.

3.2 Скорость испарения ацетона определим по формуле (7), приняв скорость воздушного потока в вытяжном шкафу равной 0,5 м/с, методом интерполяции находим h = 3,4:

mж = 10-6hРн×Fи = 10-6×3,4×26,82×0,5 = 3,47×10-4 кг/с.

4 Нижний концентрационный предел распространения пламени ацетона в % (об.) при расчетной температуре 22 °С найдем по формуле (11):

% (об.).

5 Нижний концентрационный предел распространения пламени ацетона в кг/м3 в соответствии с формулой (10) составит

кг/м3.

6 Согласно формуле (1) минимальный расход воздуха в местном отсосе должен быть

= 1,08×10-2 м3/с, или 38,88 м3/ч.

7 Фактический расход воздуха в местном отсосе qф равен:

qф = S×V×3600 = 3150 м3/ч,

где V = 0,5 м/с - скорость в открытом проеме шкафа (над поверхностью испарения);

S = 1,75 м2 - поперечное сечение вытяжного шкафа.

8 Определим давление взрыва, создаваемое при горении паров ацетона в помещении по уравнению (12):

кПа,

где Мж = 3600×mж = 3600×3,47×10-4 = 1,249 кг масса ацетона (кг), испарившегося в течение одного часа, так как запас ацетона больше испарившейся жидкости;

Нт - удельная теплота сгорания ацетона, Дж/кг;

Z = 0,3 - коэффициент участия паров ацетона во взрыве;

Vсв = Vп×0,8 = 80 - свободный объем помещения, м.

Поскольку полученное давление больше 5 кПа, то в соответствии с НПБ 105-03 помещение относится к категории А.

9 Рассчитаем концентрацию паров ацетона в помещении при остановке вентилятора местных отсосов (14), считая, что испарится весь разлившийся ацетон.

кг/м3.

10 Рассчитаем отношение y (15):

.

Поскольку y больше 0,1 то в соответствии с требованиями СНиП 41-01-2003 система местного отсоса при отсутствии автоматически включаемой аварийной вентиляции должна оборудоваться резервным вентилятором.

11 Плотность паров ацетона по воздуху при расчетной температуре найдем по формуле (17):

.

Поскольку v больше 1, пары ацетона тяжелее воздуха.

Выводы

1 Для обеспечения пожарной безопасности кладовой оперативного хранения веществ расход воздуха, создаваемый местным отсосом в вытяжном шкафу, должен быть не менее 38,88 м3/ч (фактически по санитарным нормам принят равным 3150 м3/ч).

2 Поскольку в помещении аварийная вентиляция не предусмотрена, в системе местного отсоса следует предусмотреть резервный вентилятор (п. 5.3 Методики).

3 Электрооборудование системы местного отсоса должно быть выполнено во взрывозащищенном исполнении, так как транспортируемая смесь удаляется из помещения категории А (п. 5.4 Методики).

4 Оборудование системы местного отсоса может быть размешено в помещении кладовой или в общем помещении для вентиляционного оборудования вытяжных систем общеобменной вентиляции для помещений категорий А и Б (п. 5.5 Методики),

5 Воздуховод системы местного отсоса должен быть выполнен из негорючих материалов и оборудован огнезадерживающими клапанами в местах их пересечения с противопожарной преградой или перекрытием помещений категории А, Б или В1-В3. Предел огнестойкости воздуховодов системы местных отсосов должен быть не менее 0,5 ч (пп. 5.7-5.9, 5.11 Методики).

 

Пример 5

 

1 Исходные данные

1.1 В помещении насосной объемом Vп = 310 м3 размещены поршневой насос, предназначенный для перекачки бензина АИ-93, и центробежный насос для перекачки бензола. Рабочее давление поршневого насоса 600 кПа, периметр штока поршня 0,1 м. Рабочее давление центробежного насоса также 600 кПа, а диаметр вала насоса равен 3´10-2 м.

1.2 Молярная масса бензина М = 98,2 кг/кмоль, плотность 798 кг/м3 и нижний концентрационный предел распространения пламени 1,06% (об.), удельная теплота сгорания 43641 кДж/кг (см. табл. Г2 прилож. Г), коэффициент участия во взрыве 0,3.

Молярная масса бензола М = 78,11 кг/кмоль, плотность 879 кг/м3, нижний концентрационный предел распространения пламени 1,43% (об.), удельная теплота сгорания 40 576 кДж/кг (см. табл. Г1 прилож. Г), коэффициент участия во взрыве 0,3.

2 Обоснование расчетного варианта

В качестве расчетного варианта принимаем наличие аварийной непрерывной утечки жидкостей через сальниковые уплотнения насосов и испарение всей выделяющейся жидкости. За расчетную температуру принимается абсолютная летняя температура воздуха в данном районе (Москва) согласно СНиП 23-01-99* tp = 28,5 °С.

3 Количество паров бензина, выделяющихся через сальниковые уплотнения поршневого насоса, определим по формуле (4):

mп = 2,78×10-5×р×А× = 2,78×10-5×0,1×2,5× = 1,7×10-4 кг/с,

где р = 0,1 - периметр штока насоса, м;

Р = 600 - рабочее давление, создаваемое насосом, кПа;

А - коэффициент, равный 2,5, для бензина.

4 Количество паров бензола, выделяющихся через сальниковые уплотнения центробежного насоса, рассчитаем по формуле (5):

mц = 1,57×10-7×d×rж× = 1,57×10-7×3×10-7×879× = 1,01×10-4 кг/с,

где d = 0,03 - диаметр вала насоса, м;

r = 879 - плотность жидкости, кг/м3;

Р = 600 - рабочее давление насоса, кПа,

5 Нижние концентрационные пределы распространения пламени бензина (j1) и бензола (j2) в % (об.) при расчетной температуре 28,5 °С найдем по формуле (11):

% (об.).

% (об.).

6 Нижний концентрационный предел распространения пламени бензина (k1) и бензола (k2) в кг/м3 в соответствии с формулой (10):

кг/м3.

кг/м3.

7 Согласно (1) минимальный расход воздуха в системе местных отсосов для поршневого насоса

= 8,1×10-3 м3/с, или 29,16 м3/ч.

для центробежного насоса

= 4,51×10-3 м3/с, или 16,24 м3/ч.

Тогда в соответствии с формулой (2) производительность вентсистемы, к которой подсоединяются местные отсосы, должна быть не менее

Q = qп + qц = 29,16 + 16,24 = 45,4 м3/ч.

8 Определим давление взрыва, создаваемое при горении паров бензина (DР1) и бензола (DР2) в помещении, по уравнению (12):

- для бензина:

кПа,

где Мп = 3600×mп = 3600×1,7×10-4 = 0,612 масса бензина (кг), испарившегося в течение одного часа:

Нт = 43,641×106 - удельная теплота сгорании бензина, Дж/кг;

Z = 0,3 - коэффициент участия паров бензина во взрыве;

Vсв = Vп×0,8 = 248 - свободный объем помещения, м3.

- для бензола:

кПа,

где Мц = 3600×mц = 3600×1,01×10-4 = 0,364 масса бензола (кг), испарившегося в течение одного часа;

Нт = 40,576×106 - удельная теплота сгорания бензола, Дж/кг;

Z = 0,3 - коэффициент участия паров бензола во взрыве;

Поскольку рассчитанное давление взрыва меньше 5 кПа, то в соответствии с НПБ 105-03 помещение не относится к категории А.

9 Рассчитаем концентрацию паров бензина и бензола в помещении при остановке вентилятора системы местных отсосов по формуле (14)

- для бензина:

кг/м3.

- для бензола:

кг/м3.

10 Рассчитаем отношение y (15)

- для бензина:

- для бензола:

Поскольку y меньше 0,1 для обоих веществ, то в соответствии с требованиями СНиП 41-01-2003 система местных отсосов для удаления паров бензина и бензола может быть выполнена без резервного вентилятора.

11 Плотность паров бензина и бензола по отношению к воздуху при расчетной температуре найдем по формуле (17)

- для бензина:

;

- для бензола:

.

Поскольку v1, v2 больше 1, следовательно, пары бензина и бензола тяжелее воздуха.

1
2
3
4
5
6
7
8
текст целиком

 

Краткое содержание:

СТАНДАРТ ОРГАНИЗАЦИИ

МЕТОДИКА

ОЦЕНКИ ПОЖАРОВЗРЫВООПАСНОСТИ СИСТЕМ МЕСТНЫХ ОТСОСОВ

СТО Газпром РД 1.2-138-2005

ПРЕДИСЛОВИЕ

ВВЕДЕНИЕ

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

2 НОРМАТИВНЫЕ ССЫЛКИ

3 ПОРЯДОК АКТУАЛИЗАЦИИ ДОКУМЕНТА

4 ОБЩИЕ ПОЛОЖЕНИЯ

5 ТРЕБОВАНИЯ ПОЖАРНОЙ БЕЗОПАСНОСТИ К СИСТЕМАМ МЕСТНЫХ ОТСОСОВ

6 РАСЧЕТ РАСХОДА ВОЗДУХА В СИСТЕМАХ МЕСТНЫХ ОТСОСОВ

Таблица 1

Таблица 2

Таблица 3

7 ОБОСНОВАНИЕ СОВМЕСТИМОСТИ ВЕЩЕСТВ ПРИ РЕШЕНИИ ВОПРОСА ОБ ОБЪЕДИНЕНИИ МЕСТНЫХ ОТСОСОВ В ОБЩИЕ СИСТЕМЫ

8 ОЦЕНКА ВОЗМОЖНОСТИ КОНДЕНСАЦИИ Б СИСТЕМАХ МЕСТНЫХ ОТСОСОВ IT, ПАРОВ ЛВЖ И ГЖ

9. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

ПРИЛОЖЕНИЕ А

ПРИМЕРЫ РАСЧЕТА СИСТЕМ МЕСТНЫХ ОТСОСОВ

Пример 1

Выводы

Пример 2

Выводы

Пример 3

Выводы

Пример 4

Выводы

Пример 5

Выводы

Пример 6

Выводы

ПРИЛОЖЕНИЕ Б

ДАННЫЕ ПО СОВМЕСТИМОСТИ ВЕЩЕСТВ

Таблица Б.1

Таблица Б.2

ПРИЛОЖЕНИЕ В

ПРИМЕРЫ ОЦЕНКИ ВОЗМОЖНОСТИ КОНДЕНСАЦИИ ПАРОВ ЛВЖ И ГЖ В СИСТЕМАХ МЕСТНЫХ ОТСОСОВ

Пример 1

Пример 2

Пример 3

Пример 4

А = 4,2651; В = 695,019; С = 223,22.

ПРИЛОЖЕНИЕ Г

ФИЗИКО-ХИМИЧЕСКИЕ ХАРАКТЕРИСТИКИ И ЗНАЧЕНИЯ ПОКАЗАТЕЛЕЙ ПОЖАРНОЙ ОПАСНОСТИ НЕКОТОРЫХ ИНДИВИДУАЛЬНЫХ ВЕЩЕСТВ, СМЕСЕЙ И ТЕХНИЧЕСКИХ ПРОДУКТОВ

Таблица Г1

Значение показателей пожарной опасности некоторых индивидуальных веществ

Таблица Г1

Значения показателей пожарной опасности некоторых смесей и технических продуктов

Таблица Г3

ФИЗИКО-ХИМИЧЕСКИЕ ХАРАКТЕРИСТИКИ НЕКОТОРЫХ СУГ

ПРИЛОЖЕНИЕ Д

ПЕРЕЧЕНЬ ПАРАМЕТРОВ, ИСПОЛЬЗУЮЩИХСЯ В РАСЧЕТНЫХ ФОРМУЛАХ МЕТОДИКИ

Таблица Д1

ПРИЛОЖЕНИЕ Е

ПЕРЕЧЕНЬ РЕКОМЕНДУЕМЫХ СПРАВОЧНЫХ МАТЕРИАЛОВ

СОДЕРЖАНИЕ

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

2 НОРМАТИВНЫЕ ССЫЛКИ

3 ПОРЯДОК АКТУАЛИЗАЦИИ ДОКУМЕНТА

4 ОБЩИЕ ПОЛОЖЕНИЯ

5 ТРЕБОВАНИЯ ПОЖАРНОЙ БЕЗОПАСНОСТИ К СИСТЕМАМ МЕСТНЫХ ОТСОСОВ

6 РАСЧЕТ РАСХОДА ВОЗДУХА В СИСТЕМАХ МЕСТНЫХ ОТСОСОВ

7 ОБОСНОВАНИЕ СОВМЕСТИМОСТИ ВЕЩЕСТВ ПРИ РЕШЕНИИ ВОПРОСА ОБ ОБЪЕДИНЕНИИ МЕСТНЫХ ОТСОСОВ В ОБЩИЕ СИСТЕМЫ

8 ОЦЕНКА ВОЗМОЖНОСТИ КОНДЕНСАЦИИ В СИСТЕМАХ МЕСТНЫХ ОТСОСОВ ГГ, ПАРОВ ЛВЖ И ГЖ

9 ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ