СТО 36554501-006-2006 
Расчет железобетонных плит на продавливание. Потери предварительного напряжения... СТО 36554501-006-2006 
Расчет железобетонных плит на продавливание. Потери предварительного напряжения...

СТО 36554501-006-2006 => Расчет железобетонных плит на продавливание. Потери предварительного напряжения в арматуре. 9 расчет предела...

 
Пожарная безопасность - главная
Написать нам
ГОСТы, документы

 

Пожарная безопасность ->  Прочие ->  СТО 36554501-006-2006 -> 
1
2
3
4
5
6
7
8
9
10
текст целиком
 

Расчет железобетонных плит на продавливание

 

8.48 При одностороннем огневом воздействии снизу плиты расчет на продавливание железобетонных плит производят при действии на них местных, нормально к плоскости плиты, концентрированно приложенных сосредоточенной силы и изгибающего момента. При проверке прочности плиты на продавливание в условиях одностороннего огневого воздействия снизу плиты рассматривают расчетное поперечное сечение, расположенное вокруг зоны передачи усилий на плиту на расстоянии 0,5h0, нормально к ее продольной оси, по поверхности которого действуют касательные усилия от сосредоточенной силы и изгибающего момента.

Действующие касательные усилия должны быть восприняты бетоном с нормативным сопротивлением бетона растяжению Rbtnt и расположенной по обе стороны от расчетного поперечного сечения на расстоянии 0,5h0 поперечной арматурой с сопротивлением растяжению Rswt. Учет влияния высокотемпературного воздействия на бетон производят по формуле (5.2). Находят значения Rbtnt, принимая среднее значение коэффициента gtt.

Для определения среднего значения коэффициента gtt сечение плиты по высоте разбивают не менее чем на 5 частей. Для каждой части сечения находят среднюю температуру ее нагрева и по ней (по п. 5.2) определяют значение коэффициента gtt. Зная значения коэффициентов gtt для средней температуры каждой части сечения, их суммируют, делят на количество частей и получают средний коэффициент gtt. Учет влияния высокотемпературного воздействия на поперечную арматуру производят по формуле (5.9). Находят значение Rswt, принимая коэффициент gst по табл. 5.5 для максимальной температуры поперечной арматуры.

8.49 Расчет железобетонной плиты на продавливание без поперечной арматуры на действие сосредоточенной силы производят из условия:

F = Rbtnt u h0, (8.79)

где F - сосредоточенная сила от нормативной нагрузки перекрытия на колонну;

u - периметр контура расчетного поперечного сечения, расположенного на расстоянии 0,5h0 от границы площадки опирания сосредоточенной силы F (рис. 8.16).

 

 

1 - расчетное поперечное сечение; 2 - контур расчетного поперечного сечения;

3 - контур площадки приложения нагрузки; 4 - температура нагрева бетона по высоте плиты; 5 - средняя температура участка по высоте плиты

Рисунок 8.16 - Схема для расчета железобетонной плиты на продавливание без поперечной арматуры при одностороннем огневом воздействии снизу плиты

 

При прямоугольной площадке опирания габаритами a´b периметр определяется по формуле:

u = 2 (a + b + 2h0), (8.80)

где h0 - рабочая высота плиты, равная среднеарифметическому значению рабочих высот для продольной арматуры в направлении осей x и y.

8.50 Расчет железобетонной плиты на продавливание без поперечной арматуры на действия сосредоточенной силы и изгибающего момента проводят из условия:

, (8.81)

где M/Wb - принимается не более F/4;

Wb - момент сопротивления контура расчетного поперечного сечения;

Rbtnt - см. п. 8.48.

При прямоугольной площадке опирания и замкнутом контуре расчетного поперечного сечения Wb определяют по формуле:

. (8.82)

Сосредоточенный момент M в условии (8.81) равен половине сосредоточенного момента от внешней нагрузки.

В железобетонном каркасе здания с плоскими перекрытиями момент от внешней нагрузки равен суммарному изгибающему моменту в сечениях верхней и нижней колонн, примыкающих к перекрытию в рассматриваемом узле, а сила F направлена снизу вверх.

8.51 Расчет железобетонной плиты на продавливание с поперечной арматурой при действии сосредоточенной силы производят из условия:

F £ Rbtnt u h0 + 0,8 qsw u, (8.83)

где Rbtnt u h0 ³ 0,8 qsw u;

qsw - усилие в поперечной арматуре на единицу длины контура расчетного поперечного сечения, равное при равномерном распределении поперечной арматуры:

, (8.84)

где Asw - площадь сечения поперечной арматуры с шагом sw, расположенная в пределах расстояния 0,5h0 по обе стороны от контура расчетного поперечного сечения (см. рис. 8.17);

sw - шаг поперечных стержней в направлении контура поперечного сечения;

Rbtnt и Rswt - см. п. 8.48.

При равномерном расположении поперечной арматуры вдоль контура расчетного поперечного сечения значение u принимается как для бетонного расчетного поперечного сечения согласно п. 8.49.

За границей расположения поперечной арматуры расчет на продавливание производят согласно п. 8.49, рассматривая контур расчетного поперечного сечения на расстоянии 0,5h0 от границы расположения поперечной арматуры.

8.52 Расчет железобетонной плиты на продавливание с поперечной арматурой при действии сосредоточенной силы и изгибающего момента (см. рис. 8.17) производят из условия:

, (8.85)

где Rbtnt - см. п. 8.48, u и h0 - см. п. 8.49; Wb - см. п. 8.50; qsw - см. п. 8.51.

Условие (8.85) применимо при равномерном расположении поперечной арматуры вдоль контура расчетного поперечного сечения и когда первое слагаемое не менее второго.

8.53 При действии добавочного момента в направлении, нормальном действию момента M, в условиях (8.81) и (8.85) добавляется по третьему слагаемому, которое по своей сути соответствует второму слагаемому каждого условия.

Если условия (8.81) и (8.85) выполняются при действии сосредоточенной силы и момента от нормативной нагрузки и одностороннего огневого воздействия стандартного пожара, то прочность железобетонной плиты на продавливание соответствуют требуемому пределу огнестойкости.

 

 

1 - расчетное поперечное сечение; 2 - контур расчетного поперечного сечения;

3 - граница зоны, в пределах которой учитывается поперечная арматура; 4 - контур расчетного поперечного сечения без учета в расчете поперечной арматуры; 5 - контур площадки приложения нагрузки

Рисунок 8.17 - Схема для расчета на продавливание железобетонной плиты с вертикальной равномерно распределенной поперечной арматурой при одностороннем огневом воздействии снизу плиты

 

Потери предварительного напряжения в арматуре

 

8.54 При огневом воздействии во время пожара происходят дополнительные потери предварительного напряжения в арматуре.

Учет дополнительных потерь предварительного напряжения в арматуре необходим при расчете деформаций и при решении вопроса дальнейшего использования конструкций после пожара. При пожаре возникают дополнительные потери предварительного напряжения в арматуре, вызванные температурной усадкой и ползучестью бетона, релаксацией напряжений в арматуре при нагреве и разностью температурных деформаций бетона и арматуры.

При огневом воздействии бетон на уровне продольной арматуры интенсивно прогревается и происходит температурная усадка бетона. Деформация температурной усадки тяжелого бетона даже при кратковременном нагреве больше, чем при нормальной температуре. Значение потерь предварительного напряжения от температурной усадки допускается принимать равным 40 МПа.

Потери предварительного напряжения арматуры от релаксации напряжений в арматуре за счет развития пластических деформаций арматуры при нагреве зависят от значения напряжений в арматуре и температуры ее нагрева.

Потери предварительного напряжения в арматуре от релаксации напряжений за 1-3 часа нагрева допускается принимать равным 0,001 Dts ssp. Предварительное напряжение в арматуре ssp определяют с учетом всех потерь при нормальной температуре. Здесь Dts - разность между температурой нагрева арматуры при пожаре и температурой при натяжении.

От воздействия температуры, из-за различия температурных деформаций бетона и арматуры возникают потери предварительного напряжения, которые принимают равными (ast - abt) Dts Est. Значения коэффициента abt определяют по табл. 5.2, коэффициента ast - по табл. 5.6 и модуля упругости арматуры Est - по формуле (5.10) в зависимости от температуры арматуры.

Потери предварительного напряжения арматуры, вызванные быстро натекающей ползучестью бетона при нагреве, зависят от напряжений в бетоне на уровне продольной арматуры. Их допускается принимать равными 10sbp, где sbp - сжимающие напряжения в бетоне на уровне продольной арматуры.

В элементах из бетона классов В30 и выше, имеющих преднапряжение порядка ssp = 0,6 - 0,8Rs, после огневого воздействия остаток предварительного напряжения определяют в стержневой арматуре:

класса А600:

ssp = 84 - 0,4 ts (8.86)

класса А800:

ssp = 87 - 0,39 ts (8.87)

класса А1000:

ssp = 92 - 0,26 ts; (8.88)

в проволочной арматуре классов Вр1200-Вр1500, K1400-K1500:

ssp = 89 - 0,27 ts, (8.89)

где ssp ³ 0 - остаток предварительного напряжения в арматуре в % исходного значения при изготовлении;

ts > 20 - температура арматуры при пожаре, °С.

Из формул (8.86-8.89) следует, что во время пожара от огневого воздействия происходит полная потеря предварительного напряжения в стержневой арматуре класса А600 при ее нагреве свыше 210 °С, класса А800 - свыше 220 °С, класса А1000 - свыше 350 °С, в проволочной арматуре классов Вр1200-Вр1500, K1400-K1500 - свыше 330 °С.

При нагреве арматуры ниже температуры, при которой во время пожара происходит полная потеря предварительного напряжения, в охлажденном состоянии после пожара может наблюдаться некоторое восстановление потерь преднапряжения в арматуре из-за различия температурных деформаций арматуры и бетона.

Потери предварительного напряжения в арматуре при ее нагреве выше температуры, при которой происходит полная потеря предварительного напряжения при пожаре, в охлажденном состоянии после пожара не восстанавливаются.

 

9 Расчет предела огнестойкости по целостности

 

9.1 Предел огнестойкости по целостности - по образованию сквозных отверстий или сквозных трещин во влажном бетоне при одностороннем нагреве - наступает через 5-20 мин после начала пожара и сопровождается отколами бетона от нагреваемой поверхности.

В тонкостенных железобетонных конструкциях толщиной 40-200 мм это приводит к образованию сквозных отверстий и трещин, например, в стенке двутавровой балки или в плите перекрытия. В конструкциях толщиной более 200 мм это приводит к отколам кусков бетона толщиной до 50-100 мм, что уменьшает поперечное сечение элемента.

Причиной хрупкого разрушения бетона при пожаре является образование трещин в структуре бетона и их переход в неравновесное спонтанное развитие под воздействием внешней нагрузки и неравномерного нагрева и фильтрации пара по толщине сечения элемента.

9.2 Во избежание хрупкого разрушения в бетоне напряжения сжатия не должны превышать значений, указанных на рис. 9.1, независимо от вида бетона.

 

 

Рисунок 9.1 - Зависимость хрупкого разрушения бетона от напряжений сжатия в бетоне и толщины элемента

 

9.3 В железобетонных конструкциях из тяжелого бетона с силикатным заполнителем и влажностью более 3,5 %, с карбонатным заполнителем и влажностью более 4 % и из легкого конструкционного керамзитобетона с влажностью более 5 % и плотностью более 1200 кг/м3 возможно хрупкое разрушение бетона при пожаре.

Возможность хрупкого разрушения бетона при пожаре по В.В. Жукову оценивается значением критерия хрупкого разрушения F. Если F £ 4, то хрупкого разрушения бетона не будет. Если F > 4, то бетон будет хрупко разрушаться, и предел огнестойкости по целостности не будет превышать Е15.

Критерий хрупкого разрушения бетона следует определять по формуле:

, (9.1)

где а - коэффициент пропорциональности, равный 1,16·10-2 Вт·м3/2/кг;

abt - коэффициент температурной деформации бетона, принимают по табл. 5.2 для температуры бетона 250 °С;

Ebt - модуль упругости бетона, МН/м2 (1 МН/м2 = 1 МПа = 10 кгс/см2), определяют по формуле (5.3), в которой коэффициент bb принимают по табл. 5.1 при нагреве бетона до 250 °С;

r - плотность бетона в сухом состоянии, кг/м3, принимают равной плотности бетона в естественном состоянии за вычетом испаряющейся воды в количестве 150 кг/м3;

- коэффициент псевдоинтенсивности напряжений бетона, МН·м3/2, принимают по табл. 9.1 в зависимости от вида и количества крупного заполнителя;

l - коэффициент теплопроводности бетона, Вт/(м·°С) определяют по формулам (6.2)-(6.4) для температуры бетона 200 °С.

Wэ - объемная эксплуатационная влажность бетона, м33;

n - общая пористость бетона.

Общую пористость бетона с плотными заполнителями n определяют по формулам:

для бетона с В/Ц ³ 0,4:

n = Ц (В/Ц - 0,2) 10-3; (9.2)

для бетона с В/Ц < 0,4:

n = (В/Ц · 8 · 10-4) Ц. (9.3)

Общая пористость бетона с пористым заполнителем n1 увеличивается на пористость заполнителя n3, умноженную на относительное объемное содержание крупного пористого заполнителя в бетоне V3:

n1 = n + V3 n3 (9.4)

Объемная эксплуатационная влажность бетона Wэ33) равна:

Wэ = Wb r 10-3, (9.5)

где Wb - равновесная влажность бетона по массе, кг/кг.

 

Таблица 9.1

 

Вид заполнителей

Значения (МН·м3/2) в зависимости от содержания крупного заполнителя в бетоне, %

35

50

Природный песок и силикатный щебень

0,47

0,53

Природный песок и карбонатный щебень

0,39

0,44

Природный песок и керамзитовый гравий

0,31

0,32

Примечания

1. При крупности заполнителя более 10 мм значения умножают на 1,14.

2. Для бетона, подвергнутого тепловлажностной обработке, значения делят на 1,4.

3. Значения для расхода крупного заполнителя < 50 и > 35 % принимаются по линейной интерполяции.

 

9.4 Максимальная равновесная влажность бетона в железобетонных конструкциях может сохраняться в первый месяц влажного твердения бетона или при эксплуатации во влажных условиях, когда все поры и капилляры заполнены водой. В этом случае максимальную равновесную влажность бетона определяют по формуле:

Wb,max = n rw / r1, (9.6)

где n - пористость бетона;

rw - плотность воды, равная 1000 кг/м3;

r1 - плотность бетона естественной влажности.

Равновесную влажность бетона в зависимости от относительной расчетной влажности воздуха, при которой будет эксплуатироваться железобетонная конструкция, и от расхода цемента принимают по табл. 9.2.

 

Таблица 9.2

 

Расход цемента, кг на 1 м3 бетона

Весовая влажность бетона Wb·102 (кг/кг) в зависимости от относительной расчетной влажности воздуха, %

25

50

75

200

0,6

0,9

1,2

300

1,0

1,3

2,5

400

1,5

2,1

3,0

500

2,0

2,7

3,8

700

3,0

3,9

5,4

Примечание. Промежуточные значения Wb принимают по линейной интерполяции.

 

При применении пористого крупного заполнителя равновесную влажность бетона, имеющего плотность более 1200 кг/м3, следует увеличить на объемную эксплуатационную влажность крупного заполнителя Wэз3, м33:

Wэз = Vз Wbз r 10-3, (9.7)

где Vз - относительный объем пористого крупного заполнителя в бетоне;

Wbз - равновесная влажность крупного пористого заполнителя по массе, кг/кг. Для керамзита среднюю равновесную влажность Wbз по массе можно принимать в зависимости от относительной расчетной влажности воздуха, при которой будет эксплуатироваться конструкция, по табл. 9.3.


1
2
3
4
5
6
7
8
9
10
текст целиком

 

Краткое содержание:

СТАНДАРТ ОРГАНИЗАЦИИ

ПРАВИЛА ПО ОБЕСПЕЧЕНИЮ ОГНЕСТОЙКОСТИ И ОГНЕСОХРАННОСТИ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ

СТО 36554501-006-2006

УДК 624.012.3/.4

Предисловие

Сведения о стандарте:

4 ВЗАМЕН:

Введение

1 Область применения

2 Нормативные ссылки

3 Термины и определения

4 Общие требования

Таблица 4.1

А240, А300 - 510 °С,

А400 - 550 °С,

А500, А540 - 520 °С,

В500 - 430 °С,

5 Свойства бетона и арматуры при огневом воздействии и после него

Бетон

Таблица 5.1

Таблица 5.2

Таблица 5.3

Таблица 5.4

Арматура

Таблица 5.5

Таблица 5.6

6 Теплотехнический расчет железобетонных конструкций

Таблица 6.1

7 Предел огнестойкости плит и стен по потере теплоизолирующей способности

8 Расчет предела огнестойкости по потере несущей способности

Основные условия

Плиты

Многопустотные плиты

Консольные плиты

Балки

Колонны

Таблица 8.1

Несущие стены

Растянутые элементы

Расчет прочности нормальных сечений на основе деформационной модели

Железобетонные элементы при действии поперечных сил

Статически неопределимые конструкции

Расчет плиты безбалочного перекрытия

Расчет плит балочного перекрытия

Расчет железобетонных плит на продавливание

Потери предварительного напряжения в арматуре

9 Расчет предела огнестойкости по целостности

Таблица 9.1

Таблица 9.2

Таблица 9.3

10 Конструктивные требования, повышающие предел огнестойкости железобетонных конструкций

11. Огнесохранность железобетонных конструкций после пожара

Прочность после пожара

Расчет прогиба после пожара

12. Конструктивные требования, обеспечивающие огнесохранность железобетонных конструкций

13. Пояснения к приложениям

Температура прогрева бетона в плитах и стенах при одностороннем огневом воздействии стандартного пожара

Температура прогрева бетона в колоннах, балках и ребристых конструкциях

Основные буквенные обозначения

Усилия от нагрузки и температуры в поперечном сечении элемента при огневом воздействии

Содержание

Рейтинг@Mail.ru