СТО 36554501-006-2006 
Таблица 5.6. 6 теплотехнический расчет железобетонных конструкций. Таблица 6.1.... СТО 36554501-006-2006 
Таблица 5.6. 6 теплотехнический расчет железобетонных конструкций. Таблица 6.1....

СТО 36554501-006-2006 => Таблица 5.6. 6 теплотехнический расчет железобетонных конструкций. Таблица 6.1. 7 предел огнестойкости плит и стен по...

 
Пожарная безопасность - главная
Написать нам
ГОСТы, документы

 

Пожарная безопасность ->  Прочие ->  СТО 36554501-006-2006 -> 
1
2
3
4
5
6
7
8
9
10
текст целиком
 

Таблица 5.6

 

Класс арматуры

Коэффициент температурного расширения арматуры ast · 10-6, °С-1, при температуре, °С

20

100

200

300

400

500

600

700

800

А240, А300, А400, А500, А540, А600, А800, А1000, В500, Вр1200-Вр1500, K1400, K1500

11,5

12,0

12,5

13,0

13,5

14,0

14,5

15,0

15,5

 

6 Теплотехнический расчет железобетонных конструкций

 

6.1 Для определения предела огнестойкости железобетонных конструкций необходимо знать распределение температур по бетону поперечного сечения элемента от воздействия стандартного пожара. Согласно положениям ГОСТ 30247.1 температура стандартного пожара изменяется в зависимости от времени огневого воздействия и выражается уравнением:

t = 345 lg (0,133t + 1) + te, (6.4)

где t - время нагрева, мин;

te - начальная температура, °С.

При начальной температуре te = 20 °С по уравнению (6.4) температура среды поднимается в зависимости от времени огневого воздействия (табл. 6.1).

 

Таблица 6.1

 

Время, мин.

t, °С

Время, мин.

t, °С

Время, мин.

t, °С

5

576

50

915

120

1049

10

679

60

945

150

1082

15

738

70

970

180

1110

20

781

80

990

210

1133

25

810

90

1000

240

1153

30

841

100

1025

270

1170

40

885

110

1035

300

1186

 

6.2 Решение задачи нестационарной теплопроводности сводится к определению температуры бетона в любой точке поперечного сечения элемента в заданный момент времени. Функциональная зависимость температуры от времени описывается дифференциальным уравнением теплопроводности Фурье при нелинейных граничных условиях и сложном процессе тепло- и массопереноса.

Алгоритм расчета представляет собой систему уравнений для определения температуры в каждом узле накладываемой на сечение координатной сетки. Координатная сетка накладывается так, чтобы ее узлы располагались не только в толщине сечения, но и по его периметру, а также в центре стержней для конструкций с гибкой арматурой, и по длине полок и стенки в середине их толщины для конструкций с жесткой арматурой. Шаг сетки рекомендуется задавать в пределах 0,01-0,03 м, но обязательно больше максимального диаметра рабочей арматуры.

6.3 Для теплотехнического расчета железобетонных элементов рекомендуется принимать:

коэффициент теплопроводности тяжелого бетона:

на силикатном заполнителе:

l = 1,2 - 0,00035t, Вт/(м·°С); (6.2)

на карбонатном заполнителе:

l = 1,14 - 0,00055t, Вт/(м·°С); (6.3)

для конструкционного керамзитобетона:

l = 0,36 - 0,00012t, Вт/(м·°С); (6.4)

коэффициент теплоемкости:

для тяжелого бетона на силикатном и карбонатном заполнителях:

C = 0,71 - 0,00083t, кДж/(кг·°С); (6.5)

для конструкционного керамзитобетона:

C = 0,83 - 0,00042t, кДж/(кг·°С). (6.6)

Приведенный коэффициент температуропроводности:

ared = l / (C + 50 W) r, м2/ч, (6.7)

где l и C - расчетные средние коэффициенты теплопроводности и теплоемкости бетона при 450 °С;

r - плотность сухого бетона, кг/м3;

W - весовая эксплуатационная влажность бетона, кг/кг.

В элементах с жесткой арматурой, у которых наблюдается перепад температуры по длине полок и высоте стенок жесткой арматуры, необходимо учитывать теплопроводность стали. Коэффициент теплопроводности стали равен:

l = 58 - 0,0048t, Вт/(м·°С). (6.8)

Коэффициент теплоемкости стали равен:

C = 0,48 - 0,00063t, кДж/(кг·°С). (6.9)

6.4 Для наиболее часто применяемых в строительстве железобетонных конструкций (плит, стен, балок, колонн) были проведены теплотехнические расчеты распределения температур в бетоне поперечного сечения элемента при одно-, двух-, трех-, и четырехстороннем нагреве в зависимости от длительности воздействия стандартного пожара.

Теплотехническому расчету были подвергнуты железобетонные конструкции из тяжелого бетона плотностью 2350 кг/м3, влажностью до 2,5-3 % на силикатном и карбонатном заполнителе, а также из конструкционного керамзитобетона плотностью 1400-1600 кг/м3 с влажностью до 5 % (см. приложения А и Б).

 

7 Предел огнестойкости плит и стен по потере теплоизолирующей способности

 

7.1 Температура на необогреваемой поверхности конструкции при одностороннем огневом воздействии зависит от условий теплообмена на этой поверхности, который характеризуется коэффициентом теплоотдачи.

В расчет вводится среднее арифметическое начального и конечного коэффициентов теплоотдачи. Начальное значение находят при повышении температуры на 1 °С на необогреваемой поверхности. Конечное значение коэффициента теплоотдачи определяют при повышении температуры на необогреваемой поверхности до 160 °С, т.е. при наступлении предела огнестойкости конструкции по потере теплоизолирующей способности. Затем теплотехническим расчетом находят время достижения предела огнестойкости по потере теплоизолирующей способности.

7.2 Предел огнестойкости по потере теплоизолирующей способности I при одностороннем нагреве плит, стен из тяжелого бетона на силикатном и карбонатном заполнителе и из конструкционного керамзитобетона при длительности огневого воздействия до 300 мин указан на рис. 7.1. Для многопустотных плит предел огнестойкости по потере теплоизолирующей способности следует умножить на коэффициент 0,65.

 

 

1 - тяжелого бетона на силикатном заполнителе; 2 - тяжелого бетона на карбонатном заполнителе; 3 - конструкционного керамзитобетона

Рисунок 7.1 - Предел огнестойкости по теплоизолирующей способности плит (стен) при одностороннем нагреве бетона от стандартного пожара по ГОСТ 30247.1

 

8 Расчет предела огнестойкости по потере несущей способности

 

Основные условия

 

8.1 Огнестойкость по потере несущей способности железобетонных элементов при огневом воздействии стандартного пожара рассчитывают следующим образом.

Для принятого по проекту размера сечения, в зависимости от вида бетона и требуемого предела огнестойкости R, теплотехническим расчетом или по приложениям А и Б находят распределение температуры в бетоне сечения элемента и температуру нагрева арматуры.

Если коэффициент gbt принимают равным 1, то определяют глубину прогрева бетона at до критической температуры (рис. 8.1 и 8.2). Устанавливают приведенные размеры сечения по формулам (8.1-8.8) и в формулах прочности нормальных и наклонных сечений используют Rbn, Rbtn, bt, ht, , , Ared и hot.

Когда принимают коэффициент gbt < 1, который зависит от температуры бетона, сначала определяют Rbnt по формуле (5.1) и Rbtnt по формуле (5.2) для каждой части сечения и их значения подставляют в формулы прочности нормальных и наклонных сечений с действительными размерами сечений.

Определяют прочность сечения железобетонного элемента от действия нормативной нагрузки и стандартного пожара при требуемом пределе огнестойкости. Если вычисленная прочность больше или равна прочности сечения от нормативной нагрузки до пожара, то требуемый предел огнестойкости обеспечен.

8.2 При расчете железобетонных элементов приведенные размеры сечений принимают равными:

при трехстороннем нагреве:

ширина балки, колонны bt = b - 2аt; (8.1)

ширина полки ; (8.2)

высота полки ; (8.3)

высота сечения балки, колонны ht = h - at; (8.4)

площадь балки Ared = 0,95 (b - 2at) (h - at); (8.5)

при четырехстороннем нагреве:

высота сечения колонны ht = h - 2at; (8.6)

площадь сечения колонны Ared = 0,9 (b - 2at) (h - 2at). (8.7)

Рабочая высота сечения при нагреве со стороны сжатой зоны равна:

h0t = h0 - at (8.8)

Глубина прогрева бетона at до критической температуры в балках от нагреваемой грани сечения дана на рис. 8.1.

 

 

1 - tb,cr = 500 °С - на силикатном заполнителе; 2 - tb,cr = 600 °С - на карбонатном заполнителе; 30-240 - время прогрева, мин, от стандартного пожара по ГОСТ 30247.1

 

Рисунок 8.1 - Глубина прогрева at до критической температуры tb,cr тяжелого бетона в балке от нагреваемой грани сечения

 

Глубина прогрева бетона at до критической температуры в колоннах при четырехстороннем огневом воздействии показана на рис. 8.2.

 

 

1 - на силикатном заполнителе; 2 - на карбонатном заполнителе

Рисунок 8.2 - Глубина прогрева at до критической температуры тяжелого бетона в колонне при воздействии температуры стандартного пожара по ГОСТ 30247.1

 

Плиты

 

8.3 Железобетонные плиты, опертые по двум противоположным сторонам, при одностороннем нагреве снизу разрушаются в результате образования пластического шарнира в середине пролета из-за снижения нормативного сопротивления арматуры растяжению до критического значения напряжения от нормативной нагрузки (рис. 8.3).

Во многих случаях можно пренебречь прогревом бетона сжатой зоны и сжатой арматуры, так как они нагреваются незначительно.

Прочность сечения плит проверяют по формуле:

. (8.9)

При этом высота сжатой зоны определяется:

. (8.10)

Если температура сжатой зоны бетона и сжатой арматуры высокая, то в формулы (8.9) и (8.10) вводят нормативное сопротивление бетона сжатию, вычисленное по формуле (5.1), и сопротивление сжатию арматуры, определенное по формуле (5.9).

В сильно армированных плитах при x < xR допускается их прочность определять по формуле:

. (8.11)

Высоту сжатой зоны определяют по формуле (8.10).

8.4 Критическое значение коэффициента условий работы растянутой арматуры, когда x < xR, вычисляют по формулам:

при одиночном армировании

gst,cr = Mn / Rsn As (h0 - 0,5x), (8.12)

при двойном армировании

, (8.13)

где Mn - момент от нормативной нагрузки.

Высоту сжатой зоны определяют по формуле (8.10).

Зная критическое значение коэффициента условий работы арматуры gst,cr, в зависимости от класса арматуры по табл. 5.5 определяют критическую температуру нагрева арматуры ts,cr.

Время наступления предела огнестойкости находят по кривым прогрева бетона плит (см. рис. А.1-А.6 приложения А). На вертикальной оси прогрева плиты находят значение критической температуры арматуры и проводят горизонтальную прямую до пересечения с кривой нагрева бетона, расположенного на расстоянии, равном расстоянию от оси арматуры до нагреваемой поверхности плиты. Из этой точки опускают перпендикуляр до пересечения с горизонтальной осью и находят длительность стандартного пожара в минутах, соответствующую пределу огнестойкости R плиты по потере несущей способности.

 

 

Рисунок 8.3 - Схема усилий и эпюра напряжений в сечении, нормальном к продольной оси: балочной плиты в пролете (а) и консольной плиты на опоре (б), обогреваемых с нижней стороны

 

1
2
3
4
5
6
7
8
9
10
текст целиком

 

Краткое содержание:

СТАНДАРТ ОРГАНИЗАЦИИ

ПРАВИЛА ПО ОБЕСПЕЧЕНИЮ ОГНЕСТОЙКОСТИ И ОГНЕСОХРАННОСТИ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ

СТО 36554501-006-2006

УДК 624.012.3/.4

Предисловие

Сведения о стандарте:

4 ВЗАМЕН:

Введение

1 Область применения

2 Нормативные ссылки

3 Термины и определения

4 Общие требования

Таблица 4.1

А240, А300 - 510 °С,

А400 - 550 °С,

А500, А540 - 520 °С,

В500 - 430 °С,

5 Свойства бетона и арматуры при огневом воздействии и после него

Бетон

Таблица 5.1

Таблица 5.2

Таблица 5.3

Таблица 5.4

Арматура

Таблица 5.5

Таблица 5.6

6 Теплотехнический расчет железобетонных конструкций

Таблица 6.1

7 Предел огнестойкости плит и стен по потере теплоизолирующей способности

8 Расчет предела огнестойкости по потере несущей способности

Основные условия

Плиты

Многопустотные плиты

Консольные плиты

Балки

Колонны

Таблица 8.1

Несущие стены

Растянутые элементы

Расчет прочности нормальных сечений на основе деформационной модели

Железобетонные элементы при действии поперечных сил

Статически неопределимые конструкции

Расчет плиты безбалочного перекрытия

Расчет плит балочного перекрытия

Расчет железобетонных плит на продавливание

Потери предварительного напряжения в арматуре

9 Расчет предела огнестойкости по целостности

Таблица 9.1

Таблица 9.2

Таблица 9.3

10 Конструктивные требования, повышающие предел огнестойкости железобетонных конструкций

11. Огнесохранность железобетонных конструкций после пожара

Прочность после пожара

Расчет прогиба после пожара

12. Конструктивные требования, обеспечивающие огнесохранность железобетонных конструкций

13. Пояснения к приложениям

Температура прогрева бетона в плитах и стенах при одностороннем огневом воздействии стандартного пожара

Температура прогрева бетона в колоннах, балках и ребристых конструкциях

Основные буквенные обозначения

Усилия от нагрузки и температуры в поперечном сечении элемента при огневом воздействии

Содержание