Пожарная безопасность на аэродромах 
3.4. силовые установки. 3.5. схемы размещения пассажирских салонов, багажных и... Пожарная безопасность на аэродромах 
3.4. силовые установки. 3.5. схемы размещения пассажирских салонов, багажных и...

Пожарная безопасность на аэродромах => 3.4. силовые установки. 3.5. схемы размещения пассажирских салонов, багажных и технических отсеков. 3.6. шасси...

 
Пожарная безопасность - главная
Написать нам
ГОСТы, документы

 

Пожарная безопасность ->  Прочие ->  Пожарная безопасность на аэродромах -> 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
текст целиком
 

3.4. СИЛОВЫЕ УСТАНОВКИ

 

К силовой установке относятся: двигатель, воздушный винт, рама крепления двигателя, капот, системы всасывания воздуха, выпуска отработавших газов, обдува агрегатов двигателя, топливная и масляная системы двигателя, системы запуска двигателя и пожаротушения.

В гражданской авиации применяют силовые установки с поршневыми двигателями (ПД) на самолетах Ан-2, Ил-14 и вертолетах Ми-4 и Ка-26 и с газотурбинными двигателями (ГТД); турбовинтовыми (ТВД) на самолетах ан-12, Ан-8, Ан-24, турбореактивными двухконтурными (ТРДД) на самолетах Ту-154, Ил-62, Ил-86, Як-42 и турбореактивными (ТРД) в основном на вертолетах.

Поршневые двигатели. Авиационные поршневые двигатели представляют собой звездообразные четырехтактные двигатели, работающие на бензине. Охлаждение цилиндров ПД выполняется, как правило, воздушным потоком. В зависимости от способа смесеобразования топлива с воздухом ПД подразделяются на карбюраторные (ПД АШ-62ИР на самолете Ан-2 и ПД М-14В26 на вертолете Ка-26) и двигатели с непосредственным впрыском (ПД АШ-82Т на самолете Ил-14 и ПД АШ-82В на вертолете Ми-4). Для улучшения охлаждения цилиндры располагают в виде звезды. Основными конструктивными узлами ПД являются: цилиндропоршневая группа, шатунный механизм, коленчатый вал, редуктор, механизм газораспределения, нагнетатель, картер и приводы агрегатов. Помимо этого, двигатель имеет топливную и масляную системы, систему зажигания, запуска, охлаждения и противопожарной защиты, а также агрегаты, которые обслуживают эти системы.

Горючие материалы в конструкции ПД: магниевые сплавы в конструкциях картера редуктора, корпуса нагнетателя, корпусов агрегатов масляной, топливной и гидравлической систем; резина в гибких трубопроводах топливной и масляной систем; моторное масло в маслобаке, маслорадиаторе, картере, трубопроводах; топливо в трубопроводах и агрегатах топливной системы.

Возможные причины пожара на двигателе: прогар головки цилиндра; разрушение редуктора, нагнетателя или любого привода агрегатов; прогар или заклинивание поршня; обрыв клапанов в цилиндре. В пожарном отношении опаснее задняя часть двигателя, так как там сосредоточены агрегаты топливной, масляной, гидравлической систем и выхлопной коллектор. При разрушении трубопроводов и попадании на раскаленный выхлопной коллектор бензина, масла, АМГ-10 пожар неизбежен.

Подходы для тушения пожара:

спереди со стороны входа воздуха системы охлаждения двигателя;

через открытые юбки капота в задней части двигателя;

через лючки слива масла, топлива, подогрева двигателя;

через отверстия с использованием стволов-пробойников, ломов-распылителей.

Газотурбинные двигатели. Используемые в гражданской авиации на воздушных судах в качестве силовых установок типы ГТД - ТРД, ТВД, ТРДД по конструкции и принципу работы во многом схожи. В качестве топлива в ГТД используется керосин.

ТРД состоит из входного устройства, компрессора, камеры сгорания, газовой турбины и выходного устройства.

Камера сгорания является одним из основных элементов ГТД и расположена за компрессором. В конструктивном отношении камеры сгорания выполняются трубчатыми, кольцевыми и трубчато-кольцевыми. В передней части камеры сгорания устанавливаются топливные форсунки и завихритель, служащий для стабилизации пламени. На камере сгорания имеются отверстия для подвода воздуха, предотвращающего перегрев стенок камеры сгорания. Топливо поджигается запальными устройствами. Основные нагрузки для камер сгорания - тепловые, вызываемые неравномерностью нагрева стенок. Большинство случаев их перегрева и прогара связано с неправильным расположением факела пламени.

В отличие от поршневого двигателя рабочий процесс в ГТД не разделен на отдельные такты, а протекает непрерывно. Благодаря компрессору ТРД могут создавать- тягу при работе на месте. В полете воздушный поток проходит через входное устройство, в котором происходит предварительное сжатие воздуха, затем в компрессоре происходят более значительное сжатие воздуха и рост температуры. Далее сжатый воздух из компрессора поступает в камеру сгорания, разделяясь на два потока. В камере сгорания происходят смесеобразование топлива с воздухом и смешение продуктов сгорания с вторичным потоком воздуха. Температура в зоне горения 1500-2000 °С. Во избежание перегрева камера сгорания охлаждается вторичным воздухом, который затем, перемешиваясь с продуктами сгорания, снижает температуру газа на входе в турбину до температур 800-950 °С. Газовый поток устремляется на турбину через суживающийся сопловой аппарат, где скорость его резко возрастает до 450-500 м/с. В выходном сопле осуществляется дальнейшее расширение газа, давление его уменьшается, а скорость возрастает, достигая на выходе из двигателя при работе его на земле 550-650 м/с, а в полете значительно больших значений. Скорость и температура газов продолжают оставаться высокими на значительном расстоянии от реактивного сопла. Так, температура газов, равная 100 °С, удерживается на расстоянии 12-15 м от двигателя.

ТВД называется ГТД, турбина которого развивает большую мощность, чем требуется для вращения компрессора, и передает эту избыточную мощность на воздушный винт.

ТВД состоит из таких же узлов и агрегатов, что и ТРД, но дополнительно снабжен воздушным винтом, вал которого соединяется с валом компрессора через редуктор, уменьшающий частоту вращения до наибольшего значения КПД винта. Кроме того, в ТВД имеется многоступенчатая турбина, число ступеней которой от 2 до 6 для большего расширения газа. Тяга у ТВД создается главным образом воздушным винтом (до 90%) и незначительно за счет реакции газовой струи.

Горючие материалы в ГТД аналогичны материалам поршневого двигателя. В ТВД магниевых сплавов больше в передней части двигателя: картер редуктора, лобовой картер, корпуса агрегатов в топливной, масляной и гидравлической системах. В пожарном отношении опасны также маслобаки в районе компрессора, топливно-масляные радиаторы, трубопроводы с маслом, топливом и гидрожидкостью, электропроводка.

Причины, приводящие к пожару ГТД: разрушение подшипников валов винта, компрессора, турбины; разрушение редуктора; обрыв лопаток компрессора, турбины; прогар камеры сгорания; разрушение топливных, масляных магистралей; превышение температуры газов при запуске; выброс пламени по причине переобогащения смеси или плохой раскрутке ротора.

ГТД запускаются по заданной программе. После нажатия на кнопку запуска определенные секунды работают пусковые блоки (свеча и форсунка), идет раскрутка ротора или от сжатого воздуха ВСУ, или от электростартеров, подается пусковое топливо, затем рабочее топливо и двигатель выходят на заданную частоту вращения земного малого газа. Программным механизмом служит автоматическая панель запуска двигателя (АПД).

Причиной неудачного запуска и выброса пламени может быть недостаточная раскрутка ротора из-за слабого источника запуска двигателя. Топливо подается по заданной программе, а воздуха недостаточно для горения топлива. Происходит обогащение рабочей смеси, которая не успевает сгорать полностью в камере сгорания и догорает в реактивном сопле, газоотводящей трубе и иногда с разливом под двигателем. Если пламя, выброшенное из двигателя, укорачивается и переходит из красновато-коптящего в голубое (светлое), можно считать процесс запуска условно нормальным, и наоборот.

Если в новом двигателе не произвели достаточного удаления продуктов расконсервации из внутренней полости путем холодной прокрутки ротора, то возможен выброс пламени по причине обогащения смеси. Причиной выброса пламени может быть позднее зажигание топлива, что приводит к его скоплению и выбросу с хлопком, большим пламенем и изливом горящего топлива из сопла.

ТВД к указанным выбросам более склонны, так как раскрутка ротора и редуктора с винтом затрудняется, особенно в зимнее время из-за загустевания масла в редукторе.

На стоянках запуска должны быть первичные средства пожаротушения. Должна быть двусторонняя связь запускающего двигатель с наземным техником, чтобы выключить двигатель по первому сигналу опасности.

При пожаре в мотогондоле двигателя огнетушащие составы подают через лючки снизу мотогондол (слив масла, топлива, подогрев двигателя) или пробивают обшивку стволами-пробойниками. При пожаре внутри двигателя огнетушащие составы подают в газовоздушный тракт спереди или сзади со стороны выходного сопла. Пожаротушение производится при выключенном двигателе, на ТВД - при остановленном винте.

Исходя из вышеупомянутой конструкции ГТД задняя часть двигателя после компрессора наиболее пожароопасна.

Пожарная опасность силовых установок по их размещению на воздушном судне. При размещении СУ в носовой части фюзеляжа (Ан-2) пожар, возникающий в двигателе, охватывает и кабину экипажа. Пилотирование затрудняется или становится невозможным.

При размещении СУ на крыле (Ан-24, Ил-18, Ан-8, Ан-12, Ан-26, Ан-28, Ан-30) в случае пожара двигателя существует опасность его распространения на крыло, где размещено топливо.

При размещении СУ в хвостовой части фюзеляжа (Ил-62, Ту-154, Як-42, Як-40, Ту-134) опасность загорания крыла от двигателей исключается, уменьшается шум в пассажирских салонах, подъемная сила крыла увеличивается, так как крыло "чистое" и работает вся его площадь, но близость расположения СУ к фюзеляжу и оперению также вызывает пожарную опасность последних в случае пожара на двигателе.

Размещение СУ под крылом на пилонах (Ил-76, Ил-86) делает крыло "чище" в сравнении с размещением двигателей на крыле. Пожарная опасность несколько снижается для крыла. Обслуживание двигателей удобнее. Однако двигатели подвержены повреждению из-за всасываемых посторонних предметов с ВПП рулежной дорожки (РД) в большей степени, чем двигатели с другим расположением, что может вызвать разрушение двигателя и пожар.

Размещение СУ под фюзеляжем (Ту-144) в пожарном отношении опасней, чем расположение СУ под крылом или в хвостовой части фюзеляжа, так как в центроплане размещено топливо. Подсос посторонних предметов не исключен.

 

3.5. СХЕМЫ РАЗМЕЩЕНИЯ ПАССАЖИРСКИХ САЛОНОВ, БАГАЖНЫХ И ТЕХНИЧЕСКИХ ОТСЕКОВ

 

На воздушных судах фюзеляж может быть разделен (полом) на две части: верхнюю и нижнюю. В верхней части герметичной кабины размещены: кабина экипажа, пассажирские салоны, кухни-буфеты, гардеробы для пассажиров и экипажа, туалеты, аварийно-спасательное оборудование и другие бытовые помещения. В нижней части фюзеляжа располагаются: багажные и грузовые помещения, отсеки буфета-кухни, отсеки электро- и гидросистем, системы пожаротушения, кислородные баллоны, сливные баки и т.д.

На фюзеляжах, которые не разделены полом, все это оборудование размещено в герметичной кабине. Люки для багажных и грузовых помещений расположены с правой стороны фюзеляжа. Число багажных и грузовых помещений для ВС различное. На Як-40, Ан-24, Ан-28, Ил-14 багажные и грузовые помещения размещаются в специально отведенных местах в пассажирской кабине. Под герметичной частью фюзеляжа расположены багажные или грузовые помещения, отсеки передней и основных опор шасси, высотного оборудования, вспомогательной силовой установки, радионавигационного оборудования, электрооборудования, отсек (люк) для съема и установки двигателя в задней части фюзеляжа (Ту-154).

 

3.6. ШАССИ САМОЛЕТА

 

Шасси самолета - это система опор, предназначенная для стоянки, руления, взлета и посадки, поглощения энергии удара при посадке. Передние опоры шасси воспринимают 5-10% массы самолета и 90-95% - основные опоры шасси. Шасси можно убрать в крыло (Ил-62), гондолы двигателей (Ан-24), фюзеляж (Ан-12, Ил-76), гондолы, расположенные на крыле (Ту-134, Ту-154).

Передние опоры на ВС обычно убираются в переднюю часть фюзеляжа. Шасси могут быть и неубирающиеся (Ан-2 и вертолеты) . На тележке шасси может быть различное число колес: четыре (Ил-62, Ту-134,), шесть (Ту-154), двенадцать (Ту-144). Как правило, каждое колесо на тележке имеет свой тормоз. На ВС получили распространение камерные и дисковые тормоза.

При торможении поглощается значительная энергия с переходом в тепло. Торможение бывает основное, аварийное (в случае неисправности основной системы) и стояночное. Тормозные устройства являются вторичными средствами торможения после посадки ВС. Первичные средства торможения для гашения скорости - воздушный винт или реверс тяги.

Горючие материалы в конструкции шасси: магниевые сплавы в барабанах колес, резина пневматиков колес, тормозная жидкость в стойках и тормозах, смазка в подшипниках колес, электропроводка, краска.

Возможные причины загорания колес: перегрев тормозов; разрушение пневматиков колес; разрушение подшипников; неисправности в электрогидросистеме тормозов, не срабатывается давление в тормозах; разрушение трубопроводов гидросистемы и попадание жидкости на горячие тормозные устройства.

Горение шасси чревато последствиями для крыла. Температура горения магниевого сплава 3000 °С, а дюралюминий обшивки крыла теряет прочность при температуре 250 °С. Прогар приведет к истечению из крыла топлива. В отсеках (гондолах, мотогондолах) шасси проходят трубопроводы гидравлической и топливной систем под давлением топлива или АМГ-10, агрегаты этих систем из магниевого сплава. В отсеках шасси находятся гидроаккумуляторы под давлением до 22 МПа, там же размещены распределительные устройства энергетики. Пожар в отсеках шасси опасен для центроплана крыла, так как у большинства ВС шасси расположены вблизи центроплана, в котором находится топливо.

 

3.7. ТЕХНОЛОГИЧЕСКИЕ СИСТЕМЫ ВС

 

Система кондиционирования воздуха. С увеличением высоты полета изменяются основные параметры воздушной среды: падает барометрическое давление, понижаются содержание кислорода, температура и влажность, т.е. создаются такие условия окружающей среды, пребывание в которых для человека становится невозможным. Средством защиты организма человека от воздействия атмосферы на больших высотах являются герметичная кабина и единый комплекс систем жизнеобеспечения, к которым относятся: система кондиционирования совместно со схемами отопления и вентиляции герметичной кабины, система автоматического регулирования давления воздуха в герметичной кабине, теплозвукоизоляция герметичной кабины, кислородное оборудование.

Линия вентиляции предназначена для общей и индивидуальной вентиляции кабины экипажа и пассажирских салонов. Воздух, охлажденный в турбохолодильных установках до температур 15-20 °С, подается по трубопроводам в короба общей и индивидуальной вентиляции. Короб общей вентиляции размещен вверху на потолке кабины над центральным проходом и проложен по всей длине пассажирских салонов. Через щели в боковых гранях короба воздух равномерно растекается по салонам. Короба индивидуальной вентиляции идут вдоль бортов у основания багажных полок. Холодный воздух из короба подводится через шланги к шаровым поворотным насадкам индивидуальной вентиляции, установленным в панелях над креслами пассажиров.

Отопление и вентиляция на вертолетах осуществляются воздухом, нагретым в воздухо-воздушном радиаторе (ВВР). Воздух нагнетается вентилятором из атмосферы или грузовой кабины (Ми-6А) (в зависимости от температурных условий) от главного редуктора в кожухи выхлопных труб, где он нагревается и поступает в ВВР.

Разрушения трубопроводов с горячим воздухом под давлением, турбохолодильников или других агрегатов системы приводят к пожару и разгерметизации. Трубы обматывают стеклотканями, асбестом, чтобы в месте повреждения струя горячего воздуха была не направленной, а рассеянной. Помимо этого, осуществляется и теплозвукоизоляция трубопроводов. Для исключения разрушения трубопроводов от их расширения и удлинения устанавливают термокомпенсаторы. Сочленения трубопроводов с двигателями также подвижные.

 

 

Рис. 5. Размещение оборудования и аварийно-спасательных средств на самолетах Ил-62 (а), Ан-24 (б), Ту-134А (в):

1 - аварийные выходы; 2 - кислородные баллоны; 3 - зоны прорубания обшивки;

4 - аварийные трапы

 

Кислородная система. На ВС предусмотрены стационарные кислородные системы и переносные кислородные баллоны с приборами (см. прил. 1). Стационарные кислородные системы служат для питания кислородом членов экипажа. Переносные кислородные баллоны с приборами предназначены для питания кислородом пассажиров при их плохом самочувствии. В состав стационарной кислородной системы входят: кислородные баллоны, кислородные приборы с масками на рабочих местах экипажа, трубопроводы.

Число стационарных и переносных кислородных баллонов на ВС ГА, а также давление и емкость кислорода в баллонах - различное и зависит от дальности полета ВС, числа членов экипажа и пассажиров.

При пожаре в месте расположения стационарных кислородных баллонов (рис. 5) необходимо охлаждать зону их размещения во избежание взрыва. Переносные кислородные баллоны с приборами, которые расположены в пассажирских салонах, в случае пожара необходимо удалить из ВС.

Топливная система. Она предназначена для размещения необходимого на выполнение полетного задания запаса топлива и питания им двигателей (см. прил. 2). На ВС ГА топливо в основном размещается в крыле в баках-кессонах, а также в съемных прорезиненных или металлических (из АМЦ) баках. Такие баки размещены в полости крыла. Топливо из топливных баков перекачивается электронасосами для питания двигателей. Уровень расхода топлива из баков контролируется топливомерами.

В качестве топлива на ГТД используется керосин (ТС-1). Он имеет температуру вспышки 28 °С, поэтому менее опасен, чем бензин, у которого температура вспышки -34 °С (для Б-100). Заправка, хранение и запуск двигателей, работающих на керосине, менее опасны в пожарном отношении, чем у двигателей, работающих на бензине. Температура самовоспламенения керосина такова, что при соприкосновении с нагретой поверхностью или в перегретой атмосфере это топливо становится значительно более опасным, чем бензин. У современных ВС заправка в топливные баки составляет более 100000 л керосина, что вызывает большую пожарную опасность, особенно при вынужденной посадке с неисправным шасси.

Топлива, применяемые на ВС ГА: авиакеросины ТС-1, Т-1, Т-2, Т-7, РТ; авиабензины: Б-70, Б-91, Б-95, Б-100.

Маслосистема двигателя. Она предназначена для смазки трущихся поверхностей, для охлаждения деталей двигателя и для хранения необходимого на полет запаса масла (см. прил. 3).

В маслосистему входят: маслонасос малого давления; главный масляный насос, имеющий нагнетающую и откачивающую ступени; маслонасосы откачки масла из передней, средней и задней опор двигателя; маслонасос откачки масла из коробки приводов агрегатов двигателя; фильтры для фильтрации масла, подаваемого в двигатель; трубопроводы откачки масла, в которых установлены магнитные пробки, улавливающие металлические частицы в масле и дающие сигнал на табло "Стружка в масле" в кабине экипажа; центрифуга, отделяющая масло от воздуха; топливно-масляный радиатор, в котором горячее масло отдает свое тепло топливу для лучшего его горения в камере сгорания.

Применяемые масла на двигателях: для ТРД - МК-8П, МС-8П; для ТВД - 25% МС-20 или МК-22 и 75% МК-8П или МС-8П; для ПД - МС-20 и МК-22.

При разрушении трубопроводов, любого привода агрегатов, подшипников любой из опор роторов компрессора или турбины и при наличии масла возможен пожар внутри двигателя.

Противообледенительная система. Она предназначена для борьбы с обледенением ВС на земле и в полете. Образование во время полета на поверхности ВС ледяных наростов представляет большую опасность. Обледенение уменьшает подъемную силу ВС, увеличивает лобовое сопротивление, увеличивает массу ВС, ухудшает управление. В зависимости от способа защиты поверхностей ВС различают электротермические, электроимпульсные, воздушно-тепловые и жидкостные противообледенительные системы.

В электротермической системе противообледенительный носок крыла и оперения представляет собой многослойную конструкцию, спрессованную на синтетическом клее, состоящую из внешней и внутренней обшивок, между которыми размещены два стеклотканевых слоя электроизоляции и нагревательный элемент. Каждый нагревательный элемент состоит из двух латунных контактных шин, к которым подпаяна сетка из константановой проволоки диаметром 0,12-0,15 мм. Конструкция нагревательных элементов лопастей винтов и обтекателей втулки винтов подобна конструкции нагревательных элементов крыла.

Электроимпульсной противообледенительной системой оборудованы на самолете Ил-86 предкрылки, стабилизатор и киль. Лед удаляется созданием импульсной упругой деформации в обшивке с помощью индукторов, которые представляют собой катушку возбуждения.

В воздушно-тепловых системах горячий воздух от компрессора двигателя подается по трубопроводам и эжекторам, которые ограничивают его расход и снижают температуру с 300 до 200 °С, и поступает в тепловые камеры, образованные внутренней и наружной обшивками крыла и хвостового оперения.

Жидкостные системы применяют для защиты от обледенения стекол фонарей кабин и лопастей винтов. В качестве рабочей жидкости применяется спиртоглицериновая смесь (85% спирта-ректификата и 15% глицерина), для стекол кабины экипажа - чистый спирт-ректификат. Жидкость из баков подается электронасосом по трубопроводу на распылительный коллектор.

От обледенения защищают: лобовые стекла пилотской кабины, приемники полного давления (ППД), датчики углов атаки (ДУА), передние кромки крыла и оперения, воздушный винт и его обтекатель, входной канал и направляющий аппарат двигателя.

На современных ВС стекла кабины экипажа, винты и их обтекатели, ППД и ДУА имеют электротермический обогрев. Воздушно-тепловой системой обогрева оборудованы крыло и оперение на Ил-14, Ил-62, Як-40, Як-42, Ан-24, Ан-26, Ан-28, Ан-30. На Ил-76, Ан-8 крыло и предкрылок имеют воздушно-тепловой обогрев, а хвостовое оперение - электротермический. На Ту-134 система противообледенения крыла и киля воздушно-тепловая, а у стабилизатора - электротермическая. На Ту-154 центроплан, киль и стабилизатор имеют воздушно-тепловую систему противообледенения, а предкрылки крыла - электротермическую. Входные каналы и направляющие аппараты на вышеуказанных ВС оборудованы воздушно-тепловой системой обогрева.

На вертолетах Ми-2, Ми-8 лопасти несущих и хвостовых винтов, стекла пилотских кабин, ПВД имеют электротермический обогрев, а воздухозаборники и направляющий аппарат - воздушно-тепловой. На вертолетах Ми-6, Ми-10К лопасти несущих винтов, стекла кабины пилотов и штурмана, ПВД, воздухозаборники двигателей оборудованы электротермическим обогревом, а хвостовые винты - жидкостным. Несущие винты на вертолетах Ми-4, Ка-26 и хвостовой винт на вертолете Ми-4, а также стекла кабины экипажа имеют жидкостную систему противообледенения.

Неисправности в элементах электрообогрева (короткие замыкания, искрения), воздушно-теплового обогрева (трещины или разрушения трубопроводов с горячим воздухом под давлением), а также близость расположения топливных коммуникаций и баков с топливом делают противообледенительную систему опасной в пожарном отношении.

Электроснабжение. Для обеспечения питанием всех потребителей электрической энергии на ВС ГА применяются генераторы постоянного и переменного токов. Основными типами авиационных генераторов постоянного тока являются стартеры-генераторы типа ГСР-СТ и СТГ. Стартеры-генераторы во время запуска авиадвигателя используются как стартеры, после запуска работают в генераторном режиме. Они снабжают бортсеть ВС постоянным током, рассчитанным на работу при номинальном напряжении 28,5 В.

Генераторы переменного трехфазного тока на современных ВС вырабатывают ток напряжением 208/115 В стабилизированной частоты 400 Гц. Располагаемый запас мощности позволяет обеспечить электрической энергией все потребности на ВС. Путем трансформирования из основной системы получаются системы переменного трехфазного и однофазного тока напряжением 36 и 27 В. Система постоянного тока напряжением 27 В получает питание от основной системы через трансформаторно-выпрямительные блоки. В качестве резервных источников постоянного тока напряжением 27 В на ВС установлены аккумуляторные батареи.

На стоянке источники аэродромного электропитания подключаются к двум бортовым вилкам штепсельных разъемов аэродромного питания: для питания оборудования переменным трехфазным током напряжением 208/115 В и для питания оборудования постоянным током напряжением 27 В.

Сеть переменного трехфазного тока напряжением 208 и 36 В выполнена тремя линиями (проводами). Сеть переменного однофазного тока напряжением 115 и 27 В и сеть постоянного тока напряжением 27 В - однопроводные. Корпус самолета является нулевым проводом (заземленной силовой нейтралью) системы 208/115 В, минусовым проводом питания постоянным током и вторым проводом питания переменным однофазным током напряжением 115 и 27 В.

Насыщенность ВС электроагрегатами, жгутами электропроводов с различным напряжением и силой тока, большим числом штепсельных разъемов, концевых выключателей, потребителей электрической энергии радиолокационного оборудования, электрооборудования различных систем делает все системы, управляемые электроэнергией, опасными в пожарном отношении. Попадание влаги или конденсата в коробки концевых выключателей, в штепсельные разъемы, в блоки с реле или в контакторы может вызвать нежелательные срабатывания каких-либо электроагрегатов, замыкания, искрения или пожар.

Гидравлическая система. Гидросистема на ВС предназначена для управления стабилизатором, рулем высоты, рулем направления, элеронами, спойлерами, интерцепторами, предкрылками, закрылками, уборки и выпуска шасси, торможения основных опор шасси, поворота колес передней опоры шасси, управления стеклоочистителями, входными и грузовыми дверями, рампой, открытия и закрытия аварийных люков.

На вертолетах она предназначена для питания агрегатов управления (гидроусилителей), управления общим шагом несущего винта и гидроцилиндра фрикциона ручки "шаг - газ", грузовыми створками и трапами, замком внешней подвески, аварийного закрытия лопаток входного направляющего аппарата вентилятора при пожаре в редукторном отсеке, регулировки сидений пилотов по высоте и наклона спинки, управления трапами капота.

На ВС имеется несколько самостоятельных независимых гидросистем: основная, аварийная, дублирующая. Это необходимо для того, чтобы в случае неисправности или выхода из строя какой-либо одной из гидросистем остальные могли обеспечить жизненно важные органы управления и посадки ВС (см. прил. 4).

Для создания давления в гидросистемах применяются гидронасосы с приводом от силовой установки и от электродвигателей постоянного или переменного тока. Рабочее давление в гидросистемах на ВС составляет 15-21 МПа.

В качестве рабочей жидкости для гидросистем, амортизационных стоек шасси и других гидроустройств применяется в основном АМГ-10, которая имеет прозрачный красный цвет и является легким нефтяным маслом. Будучи нагретой до 92 °С, она вспыхивает при соприкосновении с пламенем или с раскаленными предметами. Это очень опасно при разрушении трубопроводов системы торможения колес шасси или подтекании АМГ-10 из соединений трубопроводов, трещин и попадании ее на горячие тормозные устройства.

На самолете Ил-86 для гидросистемы применена нейтральная гидрожидкость НГЖ-4. Это синтетическая жидкость на основе фосфорорганического эфира с загустителем и органическим полимером со специальной присадкой. Она взрывобезопасная, имеет температуру самовоспламенения не ниже 630 °С, температуру вспышки 165 °С, медленно горит в пламени и гаснет при его удалении, токсична. При тушении горящей жидкости необходимо соблюдать меры предосторожности от попадания жидкости на покровы тела, иметь очки, респираторы.

Система пожаротушения. Она предназначена для обнаружения и тушения пожара внутри двигателей, в отсеках гондол двигателей, вспомогательной силовой установки, в отсеках основных опор шасси и в багажно-грузовых помещениях.

Противопожарная защита на ВС обеспечивается:

конструктивными мероприятиями, которые уменьшают возможность возникновения пожара, а также локализуют пожар в ограниченном отсеке, если он возник, и не дают ему распространиться на смежные жизненно важные зоны;

системами сигнализации экипажу о возникновении пожара или появлении дыма;

системами тушения пожара в наиболее пожароопасных местах самолета, в кабине экипажа и пассажирских салонах;

системой нейтрального газа, предупреждающей взрыв центропланного топливного бака при вынужденной посадке ВС с убранным шасси.

Несмотря на конструктивные мероприятия, направленные на исключение возможности возникновения пожара, в некоторых зонах ВС все же сохраняется потенциальная опасность возникновения пожара и перегрева, причем все они, кроме кабины экипажа и пассажирских салонов, недоступны для экипажа в полете. Такими зонами являются: гондолы двигателей, внутридвигательные масляные полости, отсек ВСУ, багажно-грузовые помещения и отсеки основных опор шасси. Поэтому в гондолах двигателей, во внутренних масляных полостях двигателей, в отсеке ВСУ, отсеках основных опор шасси предусмотрены системы сигнализации о пожаре, а в багажно-грузовых помещениях - системы сигнализации о появлении дыма.

Для контроля за возникновением пожара ВС оборудованы автоматическими термоэлектрическими системами сигнализации о пожаре ССП-2А и системой сигнализации о пожаре ССП-12.

Чувствительным элементом системы с извещателями (датчиками) являются термобатареи, собранные из последовательно соединенных между собой термопар (например, хромель-алюмелевых, хромель-копелевых). Малоинерционные спаи термопар расположены в верхней части извещателя, а инерционные (шарики, образованные при сварке двух других концов электродов) - в нижней. При быстром повышении температуры малоинерционные спаи нагреваются значительно быстрее инерционных, на выходе извещателя появляется ЭДС, которая после усиления используется для сигнализации о пожаре. Момент срабатывания системы сигнализации зависит от абсолютного значения температуры и скорости ее нарастания в зоне извещателя, т.е. повышение скорости приводит к срабатыванию системы при более низких температурах. Например, для системы ССП-2А, установленной в настоящее время на отечественных ВС, при скорости нарастания температуры 2 °С/с температура срабатывания системы равна 220 °С, а при 10 °С/с - 165 °С.

Второй составной частью системы сигнализации является исполнительный блок, в котором находятся реле, выполняющие функции замыкания цепи сигнализации и тушения пожара, контроля исправности системы, а также необходимые сопротивления для ограничения тока в поляризованном реле при контроле исправности системы, для тарировки сопротивления цепи извещателей при выборе заданной температуры срабатывания. Для сигнализации о пожаре в багажных отсеках могут быть установлены датчики обнаружения дыма ДС-3М (ДС-3М2), которые срабатывают и выдают сигналы в самолетную часть системы пожаротушения при заданном уменьшении прозрачности воздуха в защищаемом отсеке. Датчики обнаружения дыма обычно устанавливаются в служебных, багажных и грузовых отсеках нижней палубы фюзеляжа.

Система сигнализации о возникновении пожара внутри двигателя ССП-12 аналогична системе сигнализации ССП-2А пожаротушения в гондолах двигателей. Для предупреждения членов экипажа о возникновении пожара и появлении дыма в контролируемых отсеках и зонах на рабочих местах пилотов и бортинженеров установлены главные табло (центральные сигнальные огни - ЦСО) "Пожар" и "Дым", световые табло и мнемосигнализаторы. Для звуковой сигнализации о возникновении пожара и появлении дыма установлена сирена С-1 и подключена аппаратура речевой информации. Сигналы о возникновении пожара и дыма регистрируются также системой МСРП.

Сигналы речевой информации поступают в телефоны членов экипажа в форме сообщения женским голосом: "Пожар! Внимание! Пожар!" при возникновении пожара и "Дым! Внимание! Дым!" при появлении дыма. Системы пожаротушения в гондолах двигателей выполняют централизованными, что дает возможность подводить огнегасящие вещества от баллонов к любому защищаемому отсеку.

Надежность работы системы пожаротушения обеспечивает выполнение следующих предъявляемых к ней требований:

обеспечение ликвидации пожара в любом защищаемом отсеке как на земле, так и в полете, на всех режимах работы двигателей, высотах и скоростях полета ВС;

наличие такого количества огнегасящего вещества в каждой очереди, чтобы необходимая концентрация его создавалась за время не более 3 с и поддерживалась в течение не менее 2 с;

быстрое приведение в действие и эффективность тушения пожара (время разряда баллонов не должно превышать 3-5 с); наличие запаса огнегасящего вещества в системе, рассчитанного на двух-, четырехкратное использование; при этом первая очередь огнетушителей должна включаться автоматически от сигнализаторов пожара, вторая и последующие - вручную;

размещение баллонов с огнегасящим веществом и трубопроводов, соединяющих их с распылительными коллекторами, в местах, наиболее защищенных от возможных повреждений при аварийной посадке ВС;

наличие простых и надежных методов проверки работоспособности системы;

возможность контроля давления в баллонах при техническом обслуживании системы пожаротушения.

При возникновении пожара в зоне расположения извещателей срабатывают реле в исполнительном блоке, которые включают световую и звуковую сигнализацию о пожаре, а также подают питание на открытие электромагнитных кранов. Эти краны обеспечивают подвод огнегасящего состава к двигателю, в гондоле (подкапотном пространстве) которого возник пожар. Открытие электромагнитного крана приводит к замыканию в цепи питания пиропатронов огнетушителей первой очереди, а на некоторых типах ВС обеспечивает также включение сигнальной лампы (зеленого цвета) открытого положения крана. Через открывшийся после взрыва пиропатрона клапан затвора и открытый электромагнитный кран огнегасящий состав поступает в коллекторы-распылители, заполняя подкапотное пространство двигателя. Если после срабатывания первой очереди пожар не прекратился, то вручную кнопкой (переключателем) включают огнетушители второй очереди. При обнаружении пожара визуально огнетушители первой очереди могут быть включены вручную (см. прил. 5).

Аналогично работает и система пожаротушения для ВСУ. Система пожаротушения внутри двигателей, т.е. электросистема, аналогична рассмотренной. Малоинерционные спаи термобатарей располагают внутри двигателя (в зоне масляных полостей), инерционные - с внешней стороны. В случае охвата спаев пламенем и достижения заданной температуры срабатывания в термобатареях датчика возникает ЭДС, достаточная для включения поляризованного реле исполнительного блока, которое подает команду на включение ламп (табло) красного цвета, мнемосигнала, сирены, речевой информации и записи на МСРП. Первая очередь срабатывает автоматически (на самолете Ил-62 вручную). Огнегасящий состав в зону масляных полостей подается по специально предназначенным для этих целей трубопроводам. Выбор места подачи огнегасящего состава во внутренние полости двигателя обусловлен вероятностью возникновения пожара в этих полостях. Оптимальными условиями для тушения пожара считаются те, при которых огнегасящий состав поступает одновременно в пожароопасные зоны масляных полостей и смежные с ними воздушные полости (см. прил. 6). Ввод огнегасящего состава в гондолы или внутренние полости двигателя может оказаться неэффективным, если при включении системы тушения пожара не будет выключен двигатель, т.е. не будут устранены причины возникновения пожара и условия, способствующие его развитию.

Система сигнализации о пожаре в отсеках основных опор шасси работает от датчиков ДПС, установленных в отсеках (гондолах, мотогондолах) шасси, и подключена к системе ССП-2А.

Для предотвращения взрыва паров топлива при аварийной посадке или при пожаре в отсеках шасси подфюзеляжный топливный бак оборудован системой аварийного заполнения нейтральным газом. Подача нейтрального газа в подфюзеляжный топливный бак включается пилотами или бортинженером вручную выключателями на панелях противопожарной защиты или автоматически аварийными выключателями при посадке с убранным шасси. Аварийные выключатели устанавливаются под обтекателями на самых низких местах ВС с расчетом, что при посадке ВС с убранным шасси они первыми соприкоснутся с земной поверхностью и включат противопожарную защиту подфюзеляжного топливного бака, гондол двигателя и внутри двигателя.

При появлении дыма в служебных, грузовых, багажных отсеках, снижающего прозрачность среды на (30±10)%, срабатывает датчик дыма ДС-3М (ДС-3М2) и в кабине экипажа загорается главное табло "Дым", сигнальное табло о появлении дыма (номер багажника, грузового отсека и т. д.), а также аппаратура речевой информации и сирена. Сигналы о возникновении дыма в отсеках фюзеляжа регистрируются системой МСРП. Пожаротушение багажных, грузовых, бытовых и других помещений на нижней палубе производится переносными огнетушителями вручную членами экипажа с условием, что к ним имеется доступ. В помещениях, куда доступ в полете отсутствует, должны быть установлены распылительные коллекторы с выводом трубопровода в доступное место для подсоединения к нему переносного огнетушителя. Отсеки, не имеющие доступа для экипажа в полете, оборудованы системами сигнализации и тушения пожара.

Опасность разрушения заряженных огнетушителей на ВС при . перегреве предотвращается наличием на каждом огнетушителе сигнально-предохранительного устройства, связанного трубопроводом с сигнальным диском самозарядки. При давлении в баллоне выше (20±2) МПа разрывается предохранительная мембрана в головке-затворе, и состав стравливается за борт. При этом пластмассовая шайба сигнального диска выдавливается, оповещая о происшедшей самозарядке соответствующего огнетушителя. Номера сигнальных дисков соответствуют нормам огнетушителей (см. прил. 7).

Для предупреждения раздутия подфюзеляжных топливных баков при подаче нейтрального газа имеется система автоматического слежения за давлением в баке. К системе относятся два сигнализатора давления, управляющие перекрывным и стравливающим кранами. При превышении в баке давления 0,015 МПа срабатывает сигнализатор давления СДУ-0,15 и закрывает перекрывной кран. Газ будет поступать в уменьшенном количестве через жиклер диаметром 3 мм. Кран будет закрыт до тех пор, пока давление в баке не станет ниже 0,015 МПа. В этом случае снова откроется перекрывной кран, и огнегасящий состав будет подаваться в бак через жиклер и перекрывной кран. Если давление в баке возрастет до 0,02 МПа, сигнализатор СДУ-2А-0,2 выдаст сигнал на открытие стравливающего крана. Кран открывается, и огнегасящий состав стравливается за борт. Кран будет открыт до тех пор, пока давление в баке не станет ниже 0,02 МПа.

Для ликвидации очагов пожара и дыма в кабине экипажа, в пассажирских салонах и в подпольных багажных и грузовых помещениях предназначены ручные огнетушители типа ОР1-2, ОР2-6 (рис. 6) и ОУ.

Ручные огнетушители ОР1-2 и ОР2-6 с надписью "Фреон" можно применять для тушения любых горящих веществ, в том числе топлив, смазочных материалов, специальных жидкостей при возможном наличии электрического напряжения. Огнетушители ОР1-2 с надписью "Вода" можно применять для тушения горящих конструкционных и отделочных материалов (тканей, резины, пластиков) при условии отсутствия электрического напряжения. Огнетушители ОУ можно применять для тушения всех видов горящих веществ, в том числе воспламеняющихся жидкостей и электрооборудования (см. прил. 8).

Для приведения в действие огнетушителя ОУ необходимо расстегнуть замок хомута и снять огнетушитель, правой рукой держать за рукоятку затвора, а левой повернуть раструб в направлении огня и нажать указательным пальцем правой руки на спусковой крючок. Огнетушитель будет разряжаться, пока нажат крючок (не более 45 с).

 

 

Рис. 6. Ручные огнетушители:

а - ОР1-2 "Вода"; б - ОР2-6 "Фреон"

 

Для приведения в действие огнетушителя ОР1-2 надо открыть замок крепления огнетушителя к кронштейну и, держась одной рукой за рукоятку огнетушителя, потянуть на себя. При этом предохранительная чека автоматически выдернется из рукоятки и останется на кронштейне. Подойти к месту пожара на безопасное расстояние (2-2,5 м) и направить на него огнетушитель, удерживая наконечник огнетушителя на высоте 1,5-1,2 м от пола, и нажать указательным пальцем на пусковой рычаг до упора. Огнетушитель будет разряжаться, пока нажат пусковой рычаг.

Для приведения в действие огнетушителя ОР2-6 надо открыть замок крепления огнетушителя к кронштейну, взять одной рукой за рукоятку огнетушителя, потянуть на себя и снять его с кронштейна, другой рукой надо взять за наконечник рукава и потянуть его в сторону под углом 90° к рукоятке, вследствие чего из нее выдернется предохранительная чека. Подойти к месту пожара и направить на него наконечник рукава, одновременно тыльной стороной руки, в которой находится огнетушитель, нажать на пусковой рычаг до упора. Огнетушитель разряжается, пока нажат пусковой рычаг.

При использовании любого из указанных типов ручных огнетушителей надо соблюдать следующие рекомендации:

при распространении пожара в вертикальной плоскости направить струю огнетушащего состава на нижнюю границу очага и по мере тушения перемещать к верхней границе;

при объемном распространении очага пожара тушение по возможности осуществлять при обходе очага со всех сторон;

при распространении очага пожара в горизонтальной плоскости направить струю огнетушащего) состава на ближайшую границу очага и по мере тушения перемещать ее к дальней границе. Если ширина очага пожара больше ширины струи тушения пожара, перемещать струю в горизонтальной плоскости с продвижением вперед по мере тушения;

при наличии каких-либо воздушных потоков тушение производить с наветренной стороны;

при исчезновении открытого пламени отпустить пусковой рычаг и визуально проконтролировать наличие открытых очагов, при обнаружении которых включить огнетушитель повторно.

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
текст целиком

 

Краткое содержание:

ВВЕДЕНИЕ

Глава 1 ОРГАНИЗАЦИЯ ПРОТИВОПОЖАРНОЙ ЗАЩИТЫ НА АЭРОДРОМАХ ГА

1.1. СОЗДАНИЕ НА АЭРОДРОМАХ ПОЖАРНО-СПАСАТЕЛЬНЫХ ПОДРАЗДЕЛЕНИЙ И ОБОРУДОВАНИЯ

1.2. КООРДИНАЦИЯ ВЗАИМОДЕЙСТВИЯ ПОЖАРНО-СПАСАТЕЛЬНЫХ ПОДРАЗДЕЛЕНИИ АЭРОДРОМА С ПОЖАРНЫМИ ЧАСТЯМИ ДРУГИХ ВЕДОМСТВ

1.3. ТРЕБОВАНИЯ К УРОВНЮ ОБЕСПЕЧИВАЕМОЙ ПРОТИВОПОЖАРНОЙ ЗАЩИТЫ АЭРОДРОМОВ

Таблица 1

Таблица 2

Таблица 3

Таблица 4

1.4. ТРЕБОВАНИЯ К ВРЕМЕНИ РАЗВЕРТЫВАНИЯ ПОЖАРНО-СПАСАТЕЛЬНОГО РАСЧЕТА

1.5. ТРЕБОВАНИЯ К ПОЖАРНЫМ ТРАНСПОРТНЫМ СРЕДСТВАМ

1.6. ТРЕБОВАНИЯ К СРЕДСТВАМ СВЯЗИ И ОПОВЕЩЕНИЯ

1.7. ТРЕБОВАНИЯ К ПЕРСОНАЛУ ПОЖАРНО-СПАСАТЕЛЬНЫХ ПОДРАЗДЕЛЕНИЙ

1.8. СИСТЕМА МЕР ПО ОБНАРУЖЕНИЮ МЕСТА АВИАЦИОННОГО ПРОИСШЕСТВИЯ

Глава 2 ГОРЕНИЕ И СРЕДСТВА ТУШЕНИЯ ПОЖАРОВ

2.1. ПОНЯТИЕ О ПРОЦЕССЕ ГОРЕНИЯ

2.2. ПОЖАР И ЕГО РАЗВИТИЕ

2.3. ОГНЕТУШАЩИЕ СОСТАВЫ

Таблица 5

2.4. ОСНОВНЫЕ ПРИНЦИПЫ РАСЧЕТА СИЛ И СРЕДСТВ ДЛЯ ТУШЕНИЯ ПОЖАРОВ

Глава 3 ОСНОВНЫЕ ДАННЫЕ О КОНСТРУКЦИИ ВС И ИХ ПОЖАРНАЯ ОПАСНОСТЬ

3.1. ТИПЫ ВС. ЭКСПЛУАТИРУЕМЫХ В ГРАЖДАНСКОЙ АВИАЦИИ

3.2. ЭЛЕМЕНТЫ КОНСТРУКЦИИ ВС

3.3. МАТЕРИАЛЫ, ПРИМЕНЯЕМЫЕ В КОНСТРУКЦИИ ВС

3.4. СИЛОВЫЕ УСТАНОВКИ

3.5. СХЕМЫ РАЗМЕЩЕНИЯ ПАССАЖИРСКИХ САЛОНОВ, БАГАЖНЫХ И ТЕХНИЧЕСКИХ ОТСЕКОВ

3.6. ШАССИ САМОЛЕТА

3.7. ТЕХНОЛОГИЧЕСКИЕ СИСТЕМЫ ВС

Техническая характеристика переносных огнетушителей ОУ, ОР1-2, ОР2-6

Глава 4 ПОЖАРНАЯ ТЕХНИКА И СНАРЯЖЕНИЕ

4.1. БОЕВАЯ ОДЕЖДА И СНАРЯЖЕНИЕ ПОЖАРНОГО

Техническая характеристика пояса из хлопчатобумажной ленты

Техническая характеристика пояса из капроновой ленты.

4.2. ПОЖАРНЫЙ ИНСТРУМЕНТ

Техническая характеристика ломов

Техническая характеристика бензиномоторной пилы ПДС-400

4.3. ПОЖАРНЫЕ РУЧНЫЕ ЛЕСТНИЦЫ

Техническая характеристика лестницы-палки

Техническая характеристика лестницы-штурмовки

Техническая характеристика выдвижной лестницы 3-КЛ

Техническая характеристика выдвижной лестницы Л-60

4.4. ПОЖАРНЫЕ РУКАВА, РУКАВНОЕ ОБОРУДОВАНИЕ, СТВОЛЫ И РАЗВЕТВЛЕНИЯ

Таблица 6

Таблица 7

Техническая характеристика турбинных насадков-распылителей

Техническая характеристика пенных стволов СВП

Техническая характеристика генераторов пены средней кратности

Техническая характеристика УТПС

4.5. ОГНЕТУШИТЕЛИ

Техническая характеристика ОХП-10

Техническая характеристика переносных СО2-огнетушителей

Техническая характеристика передвижных СО2-огнетушителей

Техническая характеристика ОВП-5 и ОВП-10

Техническая характеристика ОВП-100

Техническая характеристика ОВПУ-250

Техническая характеристика ОУБ

Техническая характеристика СЖБ

Техническая характеристика ОП-100

Техническая характеристика ОПС-100

4.6. СРЕДСТВА ИНДИВИДУАЛЬНОЙ ЗАЩИТЫ

Техническая характеристика АСВ-2

4.7. ПОЖАРНЫЕ НАСОСЫ

Техническая характеристика центробежных насосов

Техническая характеристика ЭВ-200

Техническая характеристика Г-600

4.8. ПОЖАРНЫЕ АВТОМОБИЛИ

Техническая характеристика АЦ-40(375)-Ц-1А

Техническая характеристика АА-40(131)-139

Техническая характеристика АА-60(7310)-160.01

Техническая характеристика АА-70(7310)-220

Техническая характеристика порошковой установки

Техническая характеристика АА-40(43105)-189

Глава 5 РАЗВИТИЕ ПОЖАРОВ НА ВС И ОРГАНИЗАЦИЯ ИХ ТУШЕНИЯ

5.1. УСЛОВИЯ РАЗВИТИЯ И ОПАСНЫЕ ФАКТОРЫ ПОЖАРА

5.2. ОСНОВНЫЕ ВИДЫ БОЕВОЙ РАБОТЫ НА ПОЖАРЕ

5.3. ТУШЕНИЕ ПОЖАРОВ ШАССИ

5.4. ТУШЕНИЕ ПОЖАРОВ СИЛОВЫХ УСТАНОВОК

Таблица 8

5.5. ТУШЕНИЕ ПОЖАРОВ ВНУТРИ ПАССАЖИРСКИХ САЛОНОВ

Таблица 9

5.6. ТУШЕНИЕ ПОЖАРОВ РАЗЛИТОГО АВИАТОПЛИВА НА МЕСТЕ АВИАЦИОННОГО ПРОИСШЕСТВИЯ

Таблица 10

Таблица 11

Таблица 12

5.7. ТУШЕНИЕ ПОЖАРОВ НА ВС В ОСОБЫХ УСЛОВИЯХ

5.8. ОБЕСПЕЧЕНИЕ ПОЖАРНОЙ БЕЗОПАСНОСТИ АВАРИЙНОЙ ПОСАДКИ ВС

Таблица 13

Таблица 14

5.9. СОСТАВЛЕНИЕ ПЛАНОВ ПО ТУШЕНИЮ ПОЖАРОВ НА ВС

1. Характеристика аэропорта

Таблица 15

2. Пожарная охрана аэропорта

Таблица 16

Таблица 17

3. Расчет сил и средств для тушения пожаров на ВС

Таблица 18

4. Ожидаемая аварийная посадка ВС

5. Рекомендации по организации тушения пожаров на ВС в случае внезапного авиационного происшествия

6. Меры соблюдения техники безопасности

Глава 6 СПАСАНИЕ ЛЮДЕЙ ИЗ ВС

6.1. ОСНОВНЫЕ ЗАДАЧИ АВАРИЙНО-СПАСАТЕЛЬНОЙ КОМАНДЫ И ЭКИПАЖА ПРИ АВИАЦИОННОМ ПРОИСШЕСТВИИ

6.2. РАБОТА НА МЕСТЕ АВИАЦИОННОГО ПРОИСШЕСТВИЯ

6.3. ПРАВИЛА ПРИМЕНЕНИЯ БОРТОВЫХ СРЕДСТВ АВАРИЙНОГО

ПОКИДАНИЯ ВС

6.4. ОПРЕДЕЛЕНИЕ ОЧЕРЕДНОСТИ ПРИ ЭВАКУАЦИИ ЛЮДЕЙ

6.5. ТЕХНИКА БЕЗОПАСНОСТИ ПРИ ЭВАКУАЦИИ ЛЮДЕЙ

6.6. ОКАЗАНИЕ ПЕРВОЙ МЕДИЦИНСКОЙ ПОМОЩИ

Глава 7 ХАРАКТЕР РАЗВИТИЯ ПОЖАРОВ НА ОБЪЕКТАХ АВИАПРЕДПРИЯТИЙ И РЕКОМЕНДАЦИИ ПО ИХ ТУШЕНИЮ

7.1. ПОЖАРНАЯ ОПАСНОСТЬ И РАЗВИТИЕ ПОЖАРОВ В АНГАРАХ

7.1. ОРГАНИЗАЦИЯ ТУШЕНИЯ ПОЖАРОВ В АНГАРАХ

7.3. ПОЖАРНАЯ ОПАСНОСТЬ И РАЗВИТИЕ ПОЖАРОВ В АЭРОВОКЗАЛАХ

7.4. ОРГАНИЗАЦИЯ ТУШЕНИЯ ПОЖАРОВ В АЭРОВОКЗАЛАХ

Глава 8 ОРГАНИЗАЦИЯ УЧЕБНОЙ ПОДГОТОВКИ ПОЖАРНО-СПАСАТЕЛЬНЫХ РАСЧЕТОВ

8.1. ОСНОВНЫЕ ЗАДАЧИ ОБУЧЕНИЯ

8.2. ТРЕБОВАНИЯ К УРОВНЮ ПРОФЕССИОНАЛЬНОЙ ПОДГОТОВКИ

8.3. УЧЕБНО-ТЕХНИЧЕСКАЯ БАЗА

8.4. ОРГАНИЗАЦИЯ УЧЕБНОГО ПРОЦЕССА

Глава 9 ОХРАНА ТРУДА

9.1. ОРГАНИЗАЦИЯ РАБОТЫ ПО ОХРАНЕ ТРУДА

Таблица 19

9.2. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ К ЗДАНИЯМ И СЛУЖЕБНЫМ ПОМЕЩЕНИЯМ

9.3. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ ПРИ ЭКСПЛУАТАЦИИ И ОБСЛУЖИВАНИИ ПОЖАРНЫХ АВТОМОБИЛЕЙ, ОБОРУДОВАНИЯ И СНАРЯЖЕНИЯ

9.4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ ПРИ НЕСЕНИИ СЛУЖБЫ, ТУШЕНИИ ПОЖАРОВ И ПРОВЕДЕНИИ АВАРИЙНО-СПАСАТЕЛЬНЫХ РАБОТ

9.5. ОКАЗАНИЕ ПОМОЩИ ПОСТРАДАВШИМ

ПРИЛОЖЕНИЯ

1. Размещение стационарных и переносных кислородных баллонов для членов экипажа

2. Размещение топливных баков на ВС

3. Размещение маслобаков на ВС

4. Размещение гидробаков на ВС

5. Огнетушители стационарной системы пожаротушения в гондолах двигателей на ВС и их расположение

6. Огнетушители стационарной системы пожаротушения внутри двигателей на ВС

и их расположение

7. Размещение баллонов с нейтральным газом для пожаротушения и предотвращения взрыва в топливных баках

8. Переносные огнетушители, применяемые на ВС, и их расположение

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

ОГЛАВЛЕНИЕ

Глава 1. Организация противопожарной защиты на аэродромах ГА

Глава 2. Горение и средства тушения пожаров

Глава 3. Основные данные о конструкции ВС и их пожарная опасность

Глава 4. Пожарная техника и снаряжение

Глава 5. Развитие пожаров на ВС и организация их тушения

Глава 6. Спасание людей из ВС

Глава 7. Характер развития пожаров на объектах авиапредприятий и рекомендации по их тушению

Глава 8. Организация учебной подготовки пожарно-спасательных расчетов

Глава 9. Охрана труда

Рейтинг@Mail.ru